5.61 Fall 2017

Problem Set \#5

Suggested Reading: McQuarrie, Pages 396-409

1. Phase Ambiguity

When one uses $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$ and \widehat{N} operators to generate all Harmonic Oscillator wavefunctions and calculate all integrals, it is easy to forget what the explicit functional forms are for all of the $\psi_{v}(x)$. In particular, is the innermost (near x_{-}) or outermost (near x_{+}) lobe of the ψ_{v} always positive? Use $\hat{\mathbf{a}}^{\dagger}=2^{-1 / 2}(\widehat{\tilde{x}}-i \widehat{\tilde{p}})$ to show that the outermost lobe of all $\psi_{v}(x)$ is always positive, given that

$$
\psi_{v}(x)=[v!]^{-1 / 2}\left(\hat{\mathbf{a}}^{\dagger}\right)^{v} \psi_{0}(x)
$$

and that $\psi_{0}(x)$ is a positive Gaussian. Apply \hat{x} and $-i \hat{p}$ to the region of $\psi_{0}(x)$ near $x_{+}\left(E_{0}\right)$ to discover whether the region of $\psi_{1}(x)$ near $x_{+}\left(E_{1}\right)$ is positive or negative.

2. Anharmonic Oscillator

The potential energy curves for most stretching vibrations have a form similar to a Morse potential

$$
V_{M}(x)=D\left[1-e^{-\beta x}\right]^{2}=D\left[1-2 e^{-\beta x}+e^{-2 \beta x}\right] .
$$

Expand in a power series

$$
V_{M}(x)=D\left[\beta^{2} x^{2}-\beta^{3} x^{3}+\frac{7}{12} \beta^{4} x^{4}+\ldots\right] .
$$

In contrast, most bending vibrations have an approximately quartic form

$$
V_{Q}(x)=\frac{1}{2} k x^{2}+b x^{4}
$$

Here is some useful information:

$$
\begin{aligned}
\hat{x}^{3} & =\left(\frac{\hbar}{2 \mu \omega}\right)^{3 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{3} \\
\hat{x}^{4} & =\left(\frac{\hbar}{2 \mu \omega}\right)^{2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{4} \\
\omega & =(k / \mu)^{1 / 2} \quad[\text { radians } / \text { second }] \\
\widetilde{\omega} & =\frac{(k / \mu)^{1 / 2}}{2 \pi c} \quad\left[\mathrm{~cm}^{-1} \text { if } c=3.0 \times 10^{10} \mathrm{~cm} / \text { second }\right] \\
\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{3} & =\hat{\mathbf{a}}^{3}+3(\widehat{N}+1) \hat{\mathbf{a}}+3 \widehat{N} \hat{\mathbf{a}}^{\dagger}+\hat{\mathbf{a}}^{\dagger 3} \\
\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{4} & =\hat{\mathbf{a}}^{4}+\hat{\mathbf{a}}^{2}[4 \widehat{N}-2]+\left[6 \widehat{N}^{2}+6 \widehat{N}+3\right]+\hat{\mathbf{a}}^{\dagger 2}(4 \widehat{N}+6)+\hat{\mathbf{a}}^{\dagger 4} \\
\widehat{N} & =\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} .
\end{aligned}
$$

The power series expansion of the vibrational energy levels is

$$
E_{v}=h c\left[\widetilde{\omega}(v+1 / 2)-\widetilde{\omega} \tilde{x}(v+1 / 2)^{2}+\widetilde{\omega} \tilde{y}(v+1 / 2)^{3}\right] .
$$

A. For a Morse potential, use perturbation theory to obtain the relationships between (D, β) and $(\widetilde{\omega}, \widetilde{\omega} \tilde{x}, \widetilde{\omega} \tilde{y})$. Treat the $\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{3}$ term through second-order perturbation theory and the $\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{4}$ term only through first order perturbation theory.
[HINT: you will find that $\widetilde{\omega} \tilde{y}=0$.]
B. Optional Problem

For a quartic potential, find the relationship between $(\widetilde{\omega}, \widetilde{\omega} \tilde{x}, \widetilde{\omega} \tilde{y})$ and (k, b) by treating $\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{4}$ through second-order perturbation theory.

3. Perturbation Theory for Harmonic Oscillator Tunneling Through a δ-function Barrier

$$
\begin{equation*}
V(x)=(k / 2) x^{2}+C \delta(x) \tag{1}
\end{equation*}
$$

where $C>0$ for a barrier. $\delta(x)$ is a special, infinitely narrow, infinitely tall function centered at $x=0$. It has the convenient property that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) \psi_{v}(x) d x=\psi_{v}(0) \tag{2}
\end{equation*}
$$

where $\psi_{v}(0)$ is the value at $x=0$ of the $v^{\text {th }}$ eigenfunction for the harmonic oscillator. Note that, for all $v=$ odd,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) \psi_{\text {odd }}(x) d x=0 \tag{3}
\end{equation*}
$$

A. (i) The $\left\{\psi_{v}\right\}$ are normalized in the sense

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\psi_{v}\right|^{2} d x=1 \tag{4}
\end{equation*}
$$

What are the units of $\psi(x)$?
(ii) From Eq. (2), what are the units of $\delta(x)$?
(iii) $V(x)$ has units of energy. From Eq. (1), what are the units of the constant, C ?
B. In order to employ perturbation theory, you need to know the values of all integrals of $\widehat{H}^{(1)}$

$$
\begin{align*}
\widehat{H}^{(1)} & \equiv C \delta(x) \tag{5}\\
\int_{-\infty}^{+\infty} \psi_{v^{\prime}}(x) \widehat{H}^{(1)} \psi_{v}(x) d x & =C \psi_{v^{\prime}}(0) \psi_{v}(0) \tag{6}\\
\widehat{H}^{(0)} \psi_{v}(x) & =\hbar \omega(v+1 / 2) \psi_{v}(x) \tag{7}
\end{align*}
$$

Write general formulas for $E_{v}^{(1)}$ and $E_{v}^{(2)}$ (do not yet attempt to evaluate $\psi_{v}(0)$ for all even $-v$). Use the definitions in Eqs. (8) and (9).

$$
\begin{align*}
& E_{v}^{(1)}=H_{v v}^{(1)} \tag{8}\\
& E_{v}^{(2)}=\sum_{v^{\prime} \neq v} \frac{\left(H_{v v^{\prime}}^{(1)}\right)^{2}}{E_{v}^{(0)}-E_{v^{\prime}}^{(0)}} \tag{9}
\end{align*}
$$

C. The semi-classical amplitude of $\psi(x)$ is proportional to $\left[v_{\text {classical }}(x)\right]^{-1 / 2}$ where $v_{\text {classical }}(x)$ is the classical mechanical velocity at x

$$
\begin{equation*}
v_{\text {classical }}(x)=p_{\text {classical }}(x) / \mu=\frac{1}{\mu}\left[2 \mu\left(E_{v}-V(x)\right)\right]^{1 / 2} . \tag{10}
\end{equation*}
$$

At $x=0, v_{\text {classical }}(0)=\left[\frac{2 \hbar \omega(v+1 / 2)}{\mu}\right]^{1 / 2}$. The proportionality constant for $\psi(x)$ is obtained from the ratio of the time it takes to move from x to $x+d x$ to the time it takes to go from $x_{-}\left(E_{v}\right)$ to $x_{+}\left(E_{v}\right)$.

$$
\begin{aligned}
\psi(0)^{2} d x & =\frac{d x / v_{\text {classical }}(0)}{\tau_{v} / 2} \\
& =\frac{2 d x}{v_{\text {classical }}(0)(h / \hbar \omega)}=\frac{2 \omega d x}{2 \pi v_{\text {classical }}(0)} \\
\psi_{v}(0) & \approx\left[\frac{(\omega / \pi)}{v_{\text {classical }}(0)}\right]^{1 / 2} \quad \text { for even- } v
\end{aligned}
$$

Use this semi-classical evaluation of $\psi_{v}(0)$ to estimate the dependence of $H_{v v}^{(1)}$ and $H_{v v^{\prime}}^{(2)}$ on the vibrational quantum numbers, v and v^{\prime}.
D. Make the assumption that all terms in the sum over v^{\prime} (Eq. (9)) except the $v, v+2$ and $v, v-2$ terms are negligibly small. Determine $E_{v}=E_{v}^{(0)}+E_{v}^{(1)}+E_{v}^{(2)}$ and comment on the qualitative form of the vibrational energy level diagram. Are the odd $-v$ levels shifted at all from their $E_{v}^{(0)}$ values? Are the even $-v$ levels shifted up or down relative to $E_{v}^{(0)}$? How does the size of the shift depend on the vibrational quantum number?
E. Estimate $E_{1}-E_{0}$ and $E_{3}-E_{2}$. Is the effect of the δ-function barrier on the level pattern increasing or decreasing with v ?
F. Sketch (freehand) $\Psi(x, t=0)=2^{-1 / 2}\left[\psi_{0}(x)+\psi_{1}(x)\right]$. Predict the qualitative behavior of $\Psi^{\star}(x, t) \Psi(x, t)$.
G. Compute $\langle\hat{x}\rangle_{t}$ for the coherent superposition state in part F. Recall that

$$
x_{v+1, v}=(\text { some known constants }) \int \psi_{v+1}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \psi_{v} d x .
$$

H. Discuss what you expect for the qualitative behavior of $\langle\hat{x}\rangle_{t}$ for the $v=0,1$ superposition vs. that of the $v=2,3$ superposition state. How will the right \leftrightarrow left tunneling rate depend on the value of C ?

4. Perturbation Theory for a Particle in a modified infinite box

$$
\begin{gathered}
\widehat{\mathbf{H}}^{(0)}=\hat{p}^{2} / 2 m+V^{(0)}(x) \\
V^{(0)}(x)=\infty \quad x<0, x>a \\
V^{(0)}(x)=0 \quad 0 \leq x \leq a \\
\widehat{\mathbf{H}}^{(1)}=V^{\prime}(x) \\
V^{\prime}(x)=0 \quad x<\frac{a-b}{2}, x>\frac{a+b}{2} \\
V^{\prime}(x)=-V_{0} \quad \frac{a-b}{2}<x<\frac{a+b}{2}, V_{0}>0
\end{gathered}
$$

where $a>0, b>0$, and $a>b$.
A. Draw $V^{(0)}(x)+V^{\prime}(x)$.
B. What are $\psi_{n}^{(0)}(x)$ and $E_{n}^{(0)}$?
C. What is the selection rule for non-zero integrals

$$
\mathbf{H}_{n m}^{(1)}=\int d x \psi_{n}^{(0)} \widehat{\mathbf{H}}^{(1)} \psi_{m}^{(0)} ?
$$

D. Use

$$
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
$$

and

$$
\int d x \cos C x=\frac{1}{C} \sin C x
$$

to compute $E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}$ for $n=0,1,2$, and 3 and limiting the second-order perturbation sums to $n \leq 5$.
E. Now reverse the sign of V_{0} and compare the energies of the $n=0,1,2,3$ levels for $V_{0}>0$ vs. $V_{0}<0$.

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

