5.61 Fall 2017
 Problem Set \#4

Suggested Reading: McQuarrie, Chapter 5

1. Survival Probabilities for Wavepacket in Harmonic Well

Let $V(x)=\frac{1}{2} k x^{2}, k=\omega^{2} \mu, \omega=10, \mu=1$.
A. Consider the three term $t=0$ wavepacket

$$
\Psi(x, 0)=c \psi_{1}+c \psi_{3}+d \psi_{2}
$$

Choose the constants c and d so that $\Psi(x, 0)$ is both normalized and has the largest possible negative value of $\langle x\rangle$ at $t=0$. What are the values of c and d and $\langle x\rangle_{t=0}$?
B. Compute and plot the time-dependence of $\langle\hat{x}\rangle$ and $\langle\hat{p}\rangle$. Do they satisfy Ehrenfest's theorem about motion of the "center" of the wavepacket?
C. Compute and plot the survival probability

$$
P(t)=\left|\int d x \Psi *(x, t) \Psi(x, 0)\right|^{2}
$$

Does $P(t)$ exhibit partial or full recurrences or both?
D. Plot $\Psi *\left(x, t_{1 / 2}\right) \Psi\left(x, t_{1 / 2}\right)$ at the time, $t_{1 / 2}$, defined as one half the time between $\mathrm{t}=0$ and the first full recurrence. How does this snapshot of the wavepacket look relative to the $\Psi^{*}(x, 0) \Psi(x, 0)$ snapshot? Should you be surprised?
2. Vibrational Transitions

The intensity of a transition between the initial vibrational level, v_{i}, and the final vibrational level, v_{f}, is given by

$$
I_{v_{f}, v_{i}}=\left|\int \quad v_{f}(x) \hat{\mu}(x) v_{i}(x) d x\right|^{2}
$$

where $\mu(x)$ is the "electric dipole transition" moment function

$$
\begin{aligned}
\hat{\mu}(x) & =\mu_{0}+\left.\frac{d \mu}{d x}\right|_{x=0} \hat{x}+\left.\frac{d^{2} \mu}{d x^{2}}\right|_{x=0} \frac{\hat{x}^{2}}{2}+\text { higher-order terms } \\
& =\mu_{0}+\mu_{1} \hat{x}+\mu_{2} \hat{x}^{2} / 2+\mu_{3} \hat{x}^{3} / 6+\ldots
\end{aligned}
$$

Consider only μ_{0}, μ_{1}, and μ_{2} to be non-zero constants and note that all $\psi_{v}(x)$ are real. You will need some definitions from Lecture Notes \#9:

$$
\begin{aligned}
\hat{x} & =\left(\frac{2 \mu \omega}{\hbar}\right)^{-1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \\
\hat{\mathbf{a}} \psi_{v} & =v^{1 / 2} \psi_{v-1} \\
\hat{\mathbf{a}}^{\dagger} \psi_{v} & =(v+1)^{1 / 2} \psi_{v+1} \\
{\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right] } & =+1
\end{aligned}
$$

A. Derive a formula for all $v+1 \leftarrow v$ vibrational transition intensities. The $v=1 \leftarrow v=0$ transition is called the "fundamental".
B. What is the expected ratio of intensities for the $v=11 \leftarrow v=10$ band ($\mathrm{I}_{11,10}$) and the $v=1 \leftarrow v=0$ band ($\mathrm{I}_{1,0}$)?
C. Derive a formula for all $v+2 \leftarrow v$ vibrational transition intensities. The $\mathrm{v}=2 \leftarrow v=0$ transition is called the "first overtone".
D. Typically $\left(\frac{2 \mu \omega}{\hbar}\right)^{-1 / 2}=1 / 10$ and $\mu_{2} / \mu_{1}=1 / 10$ (do not worry about the units). Estimate the ratio $\mathrm{I}_{2,0} / \mathrm{I}_{1,0}$.

3. More Wavepacket for Harmonic Oscillator

$\sigma_{x} \equiv\left[\left\langle\hat{x}^{2}\right\rangle-\langle\hat{x}\rangle^{2}\right]^{1 / 2}$
$\sigma_{p_{x}} \equiv\left[\left\langle\hat{p}^{2}\right\rangle-\langle\hat{p}\rangle^{2}\right]^{1 / 2}$
$\Psi_{1,2}(x, t)=2^{-1 / 2}\left[e^{-i \omega t} \psi_{1}+e^{-2 i \omega t} \psi_{2}\right]$
$\Psi_{1,3}(x, t)=2^{-1 / 2}\left[e^{-i \omega t} \psi_{1}+e^{-3 i \omega t} \psi_{3}\right]$
A. Compute $\sigma_{x} \sigma_{p_{x}}$ for $\Psi_{1,2}(x, t)$.
B. Compute $\sigma_{x} \sigma_{p_{x}}$ for $\Psi_{1,3}(x, t)$.
C. The uncertainty principle is

$$
\sigma_{x} \sigma_{p_{x}} \geq \hbar / 2
$$

The $\Psi_{1,2}(x, t)$ wavepacket is moving and the $\Psi_{1,3}(x, t)$ wavepacket is "breathing". Discuss the time dependence of $\sigma_{x} \sigma_{p_{x}}$ for these two classes of wavepacket.

4. Two-Level Problem

A. Algebraic Approach

$$
\begin{aligned}
& \int \psi_{1}^{*} \hat{H} \psi_{1} d \tau=H_{11}=E_{1} \\
& \int \psi_{2}^{*} \hat{H} \psi_{2} d \tau=H_{22}=E_{2} \\
& \int \psi_{2}^{*} \hat{H} \psi_{1} d \tau=H_{12}=V
\end{aligned}
$$

Find eigenfunctions:
$\psi_{+}=a \psi_{1}+b \psi_{2} \quad$ (must be normalized, ψ_{1}, ψ_{2} are orthonormal)
$\hat{H} \psi_{+}=E_{+} \psi_{+}$
$\psi_{-}=c \psi_{1}+d \psi_{2} \quad$ (must be normalized and orthogonal to ψ_{+})
$\hat{H} \psi_{-}=E_{-} \psi_{-}$
Use any brute force algebraic method (but not matrix diagonalization) to solve for $E_{+}, E_{\rightarrow}, a, b, c$, and d.
B. Matrix Approach
$\mathbf{H}=\left(\begin{array}{cc}E_{1} & V \\ V^{*} & E_{2}\end{array}\right)=\left(\begin{array}{cc}\bar{E} & 0 \\ 0 & \bar{E}\end{array}\right)+\left(\begin{array}{cc}\Delta & V \\ V^{*} & -\Delta\end{array}\right)$
$\bar{E}=\frac{E_{1}+E_{2}}{2}$
$\Delta=\frac{E_{1}-E_{2}}{2}<0 \quad$ (assume $E_{1}<E_{2}$)
(i) Find the eigenvalues of \mathbf{H} by solving the determinantal secular equation

$$
\begin{aligned}
& 0=\left|\begin{array}{cc}
\Delta-E & V \\
V^{*} & -\Delta-E
\end{array}\right| \\
& 0=-\Delta^{2}+E^{2}-|V|^{2}
\end{aligned}
$$

(ii) If you dare, find the eigenfunctions (eigenvectors) of \mathbf{H}. Do these eigenvectors depend on the value of \bar{E} ?
(iii) Show that
$E_{+}+E_{-}=2 \bar{E} \quad($ trace of $\mathbf{H})$
$\left(E_{+}\right)\left(E_{-}\right)=\left|\begin{array}{cc}\Delta & V \\ V^{*} & -\Delta\end{array}\right| \quad($ determinant of $\mathbf{H})$
(iv) This is the most important part of the problem: If $|\mathrm{V}| \ll \Delta$, show that $E_{ \pm}=\bar{E} \pm \frac{|V|^{2}}{\left(E_{2}-E_{1}\right)}$ by doing a power series expansion of $\left[\Delta^{2}+|V|^{2}\right]^{1 / 2}$. Also show that

$$
\psi_{+} \approx \alpha \psi_{2}+\frac{|V|}{E_{2}-E_{1}} \psi_{1}
$$

where $\alpha=\left[1-\left(\frac{|V|}{E_{2}-E_{1}}\right)^{2}\right]^{1 / 2} \approx 1$. It is always a good strategy to show that ψ_{+}belongs to $E_{+}\left(\operatorname{not} E_{-}\right)$. This minimizes sign and algebraic errors.
C. You have derived the basic formulas of non-degenerate perturbation theory. Use this formalism to solve for the energies of the three-level problem:

$$
\mathbf{H}=\left(\begin{array}{ccc}
E_{1}^{(0)} & V_{12} & V_{13} \\
V_{12}^{*} & E_{2}^{(0)} & V_{23} \\
V_{13}^{*} & V_{23}^{*} & E_{3}^{(0)}
\end{array}\right)
$$

$$
\text { Let } \begin{array}{ll}
& E_{1}^{(0)}=-10 \\
& E_{2}^{(0)}=0 \\
& E_{3}^{(0)}=+20 \\
& V_{12}=1 \\
& V_{13}=2 \\
& V_{23}=1
\end{array}
$$

D. The formulas of non-degenerate perturbation theory enable solution for the three approximate eigenvectors of \mathbf{H}, as shown below. Show36 that \mathbf{H} is approximately diagonalized when you use ψ_{1}^{\prime} below to evaluate \mathbf{H} :

$$
\begin{aligned}
& \psi_{1}^{\prime}=\psi_{1}+\frac{V_{12}}{E_{1}-E_{2}} \psi_{2}+\frac{V_{13}}{E_{1}-E_{3}} \psi_{3} \\
& \psi_{2}^{\prime}=\psi_{2}+\frac{V_{12}}{E_{2}-E_{1}} \psi_{1}+\frac{V_{13}}{E_{2}-E_{3}} \psi_{3} \\
& \psi_{3}^{\prime}=\psi_{3}+\frac{V_{13}}{E_{3}-E_{1}} \psi_{1}+\frac{V_{23}}{E_{3}-E_{2}} \psi_{2}
\end{aligned}
$$

This problem is less burdensome when you use numerical values rather than symbolic values for the elements of \mathbf{H}.

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

