APPENDIX 1

Version of 8/24/05 11:01 AM
Simulation of $\mathcal{H}-N M R$ without a structure*:

Mircea D. Gheorghiu

*Because the gNMR program has been updated, the figures in the text may appear slightly different on the computer.

A. Without iteration.

1. Click on the on the icon that is displayed on the Dell OptiPlexGX1 PC.
2. The Welcome to $\mathbf{g N M R}$ window pops-up. If the Molecule window automatically opens instead, then skip to the next step.

Screenshot courtesy of Adept Scientific, Inc. Used with permission.

Click on: Start with an empty molecule to view the Molecule window. This window is a spreadsheet with the following columns:
(1) nucleus name ($1 \mathrm{H}, 13 \mathrm{C}, 19 \mathrm{~F}, 31 \mathrm{P}$, etc)
(2) n, number of magnetically equivalent nuclei For example $n=3$ for the methyl protons)
(3) chemical shift (in ppm)
(4) individual line width (not applicable for 5.311 cases)
(5) coupling constant(s) (in Hz - will appear after data is entered on the chart).

Screenshot courtesy of Adept Scientific, Inc. Used with permission.
4. Assume that you want to simulate the three-proton spin system $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right.$ and H_{3}, respectively, of vinyl acetate (the methyl group is isolated and does not interact with the vinyl protons):

Using the print-out from the Varian Mercury Plus, identify the ppm value that is in the middle of each of the three quartets. . This value is the chemical shift for the respective proton (e.g. δ_{1}, δ_{2}, and δ_{3}, respectively). The distance in Hz between the quartet lines provides the coupling constant $\left(\mathrm{J}_{1,2}, \mathrm{~J}_{1,3}, \mathrm{~J}_{2,3}\right)$

Note that the matrix of coupling constants is symmetric because $\mathrm{J}_{1,2}=\mathrm{J}_{2,1}, \mathrm{~J}_{2,3}=$ $\mathrm{J}_{3,2}$; etc). Therefore, only the lower triangle is filled in the Molecule window spreadsheet.

The Molecule window spreadsheet will look like:

5. Click on Spectrum (see the figure above) or Recalculate (if you have done some changes in the Molecule window). The full spectrum of the three vinyl protons system (calculated with the spectral parameters provided) is then displayed.

Screenshots courtesy of Adept Scientific, Inc. Used with permission.

5a．Next check that the spectrometer frequency is correctly set by clicking on Settings｜File．．．and setting the spectrometer frequency to 300 MHz for Varian Mercury Plus NMR．Click Apply．

File Settings				区
Topic：	General：			
只号	File title：			
General	Vinvlacetate			
\geqslant	Spectrometer Frequency：			
Symmetry	［for $\mathbf{1 H}$ ，in MHz］		250.000	
A	© ppm Units	C Hz Units		
Approx．．	C Isotropic	C Anisotropic		
\％	Γ Include coupling to $\mathrm{S}>1 / 2$ isotopes			
	Lineshape：		Lorentzian \square	
Iteration	OK	Cancel	Help	

5b．Check if the line width is approximately 0.5 Hz ．Click on Settings｜Spectrum．．．， enter the correct value and press OK．

Screenshots courtesy of Adept Scientific，Inc．Used with permission．

To expand the spectrum, select the desired sub-range by dragging the vertical line in the spectrum representation window that is stacked on top of the calculated spectrum. Two vertical dotted lines are visible around the selection. Click once between them, and the selected part will fill the window. To restore the whole spectrum, click on Full, which is the first button that is displayed in the toolbar of that window.

Screenshots courtesy of Adept Scientific, Inc. Used with permission.

B. With iteration.

The iteration step is necessary becausethe hand guessed chemical shifts and coupling constants do not necessarily provide a calculated spectrum that fits with the peak positions and/or intensities of the experimental NMR. By iteration, a least-squares procedure is triggered that optimizes the shifts and coupling constants to produce the best fit among the observed (experimental) and calculated spectra. Remember: before running iteration, set up first a normal simulation as described above.

1. Go to Molecule window. Define variable names (letters such as a, b, c under the chemical shifts and combination of letters such as ab, ac, bc under coupling constants) for each spectral parameter that you want to optimize. Spectral parameters with the same name will be kept equal during iteration. A hyphen ("-"") at the beginning of the name means that the respective parameter will be NOT optimized.

Screenshot courtesy of Adept Scientific, Inc. Used with permission.
2. Click on Iterate|Assignments of $\mathbf{1 H}$ and enter manually the peaks position (12 lines) from the output list resulted by printing the line position of the experimental spectrum.

3. Click on Iterate|Go. The refined spectral parameters are displayed in the Molecule window.

Screenshots courtesy of Adept Scientific, Inc. Used with permission.

The calculated (iterated) spectrum is:

Screenshot courtesy of Adept Scientific, Inc. Used with permission.

