**Reading for Today**: 14.6, 17.7 in 5<sup>th</sup> ed and 13.6, 17.7 in 4<sup>th</sup> ed. **Reading for Lecture #32**: 14.7-14.8, 14.10 in 5<sup>th</sup> ed and 13.7-13.8, 13.10 in 4<sup>th</sup> ed

| Topic: Kinetics                       |  |
|---------------------------------------|--|
| I. Radioactive Decay                  |  |
| II. Second Order Integrated Rate Laws |  |
| III. Relationship Between k and K     |  |
| IV. Elementary Steps and Molecularity |  |

I. **Radioactive Decay** is an example of a first order process. Current research includes topics ranging from nuclear waste storage to designing new radioactive tracers for use in medicine. MIT Chemistry Professor Alan Davison was a patent holder of Cardiolite<sup>TM</sup>, which uses Technetium-99 for diagnostic organ imaging and bone scans.

$$[A] = [A]_0 e^{-kt}$$
 and  $t_{1/2} = \frac{0.6931}{k}$ 

However, instead of concentration, the first order integrated rate law is expressed in terms of N (number of nuclei)

 $N = N_o e^{-kt}$  k is the decay constant

t is time

N<sub>0</sub> is the number of nuclei originally present

Chemical kinetics – monitor changes in \_\_\_\_\_\_over time

Nuclear kinetics – monitor rate of occurrence of \_\_\_\_\_\_events with a Geiger counter (radiation detector)

Decay rate is also called Activity (A)

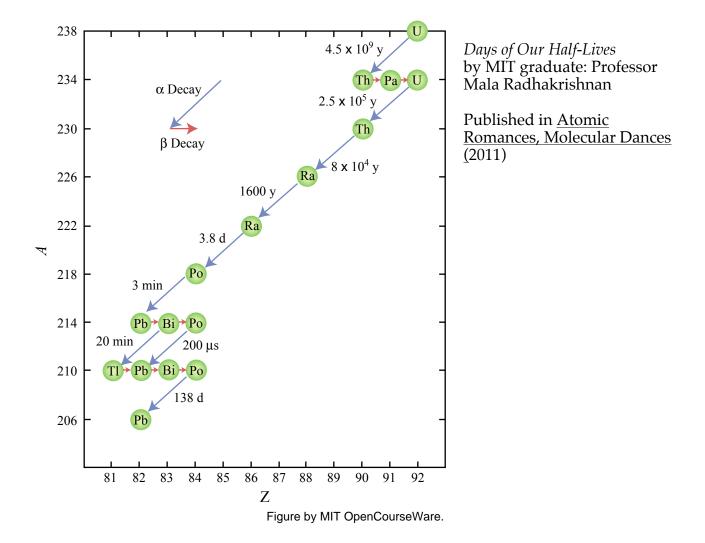
Activity = 
$$A = \frac{-dN}{dt} = k N$$

because activity is proportional to the number of nuclei (N):

 $N = N_o e^{-kt}$  can be expressed as  $A = A_o e^{-kt}$  A is Activity  $A_o$  is original activity

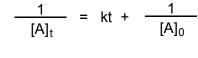
Units

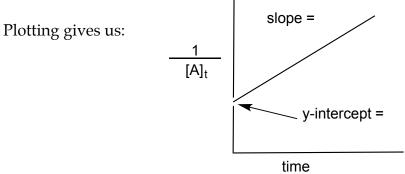
S.I. unit for Activity is the becquerel (Bq) 1 Bq = 1 radioactive disintegration per second Older unit is the curie (Ci)  $1 \text{ Ci} = 3.7 \times 10^{10}$  disintegrations per sec


Types of nuclear radiation

There are numerous types of nuclear radiation. Some types involve a mass change and others do not.

An alpha particle is the equivalent of a helium-4 nucleus (2 protons, 2 neutrons) whereas a beta particle is an electron. Thus, alpha decay involves a mass change whereas beta decay does not.

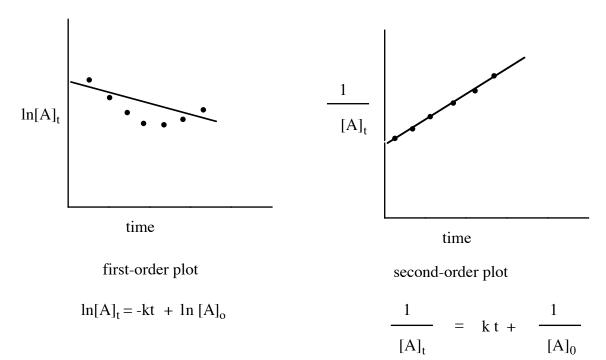

There is a huge variation in half-life, from milliseconds "ms" to days "d" to years "y" or "a" to Giga years "Ga" ( $10^9$  years)


Some nuclear decay series (e.g. Uranium238) involve more than one type of decay process. (A = atomic mass, Z= atomic number)



## II. Second Order Integrated Rate Laws

The equation for second order integrated rate law is






The equation for second order half-life is:

$$t_{1/2} = \frac{1}{k[A]_0}$$
 Second order half-life depends on \_\_\_\_\_

We can determine if the data are a better fit to a first-order equation or a second-order equation. Here the data fit better to a second-order equation.



## III. Relationship between k and K

At equilibrium, the rates of the forward and reverse reactions are \_\_\_\_\_\_ The equilibrium constant for a chemical reaction that has form  $A + B \Leftrightarrow C + D$  is Suppose experiments show both the forward reaction and reverse reaction are second order, with the following rate laws:

 $k_{1}$   $A + B \Leftrightarrow C + D \quad \text{forward reaction} \quad \text{rate}_{f} = \\ k_{-1} \quad \text{reverse reaction} \quad \text{rate}_{r} =$   $At \text{ equilibrium, these rates are equal:} \quad k_{1} [A][B] = k_{-1} [C][D]$   $and \quad \underbrace{[C][D]}_{[A][B]} = \underbrace{k_{1}}_{k_{-1}}$ 

Therefore K =

The equilibrium constant for a reaction is equal to the ratio of the rate constants for the forward and reverse elementary reactions that contribute to the overall reaction.

Equilibrium constants in kinetics terms:

| K > 1 | k <sub>1</sub> | k  |
|-------|----------------|----|
| K < 1 | k <sub>1</sub> | k1 |

## **IV. Elementary Steps and Molecularity**

Reactions do not typically occur in 1 step, but proceed through a series of steps.

Each step is called an <u>elementary reaction</u>.

For an overall reaction, the order and the rate law \_\_\_\_\_\_ be derived from the stoichiometry of the balanced reaction.

For an elementary reaction, the order and rate law\_\_\_\_\_ predicted.

Elementary reactions occur exactly as written.

The number of reactant molecules that come together to form product is the molecularity

An unimolecular process involves \_\_\_\_\_reactant (example(s): \_\_\_\_\_\_)

A bimolecular process involves \_\_\_\_\_ reactants (common)

A termolecular process involves \_\_\_\_\_ reactants (rare)

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.