LECTURE 34

- 1. A catalyst lowers an $E_{a,f}$ from 358 kJ mol⁻¹ to 350. kJ mol⁻¹ for a particular reaction. Determine the change (if any) in the:
 - (a) ΔE for the reaction and
 - (b) $E_{a,r}$ for the reaction.
 - (a) A catalyst does not affect the ΔE for the reaction. The ΔE is a State Function (i.e. independent of path).
 - (b) The $E_{a,r}$ is also lower by 8 kJ.
- 2. (a) Draw a reaction coordinate diagram with "potential energy (P.E.)" on the Y-axis and "Reaction Coordinate ->" on the X-axis for an endothermic reaction.
 - (b) Show as a solid line, the activation energy barrier for the uncatalyzed reaction, and show as a dashed line, the activation energy barrier for the catalyzed reaction.
 - (c) Label the diagram with "products", "reactants," and " ΔE ."

Additional Book Problems:

Atkins and Jones, Chemical Principles, fifth edition: Chapter 14.16, problem 14.95 5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.