SO₂Cl₂ decomposes by first order kinetics and $k = 2.81 \times 10^{-3} \text{ min}^{-1}$ at a given temperature. The initial concentration of $SO_2Cl_2 = 0.015$ M. Determine the half-life of the reaction. $t_{1/2} = 0.6931/k$ $t_{1/2} = 1/(k[A]_0)$ 1. $t_{1/2} = 0.6931/2.81 \text{ x } 10^{-3} \text{ min}^{-1} = 246.6 \text{ min}$ 2. $t_{1/2} = 0.6931/2.81 \text{ x } 10^{-3} \text{ min}^{-1} = 247 \text{ min}$ 3. $t_{1/2} = 1/(2.81 \text{ x } 10^{-3} \text{ min}^{-1} (0.015)) = 2.37 \text{ x } 10^4 \text{ min}^{-1}$ 4. $t_{1/2} = 1/(2.81 \text{ x } 10^{-3} \text{ min}^{-1} (0.015)) = 2.4 \text{ x } 10^4 \text{ min}$

1

SO₂Cl₂ decomposes by first order kinetics and $k = 2.81 \times 10^{-3} \text{ min}^{-1}$ at a given temperature. The initial concentration of $SO_2Cl_2 = 0.015$ M. Determine the half-life of the reaction. $t_{1/2} = 0.6931/k$ $t_{1/2} = 1/(k[A]_0)$ **11%** 1. $t_{1/2} = 0.6931/2.81 \text{ x } 10^{-3} \text{ min}^{-1} = 246.6 \text{ min}$ 69% 2. $t_{1/2} = 0.6931/2.81 \text{ x } 10^{-3} \text{ min}^{-1} = 247 \text{ min}^{-1}$ **12%** 3. $t_{1/2} = 1/(2.81 \text{ x } 10^{-3} \text{ min}^{-1} (0.015)) = 2.37 \text{ x } 10^4 \text{ min}$ **9% 4.** $t_{1/2} = 1/(2.81 \text{ x } 10^{-3} \text{ min}^{-1} (0.015)) = 2.4 \text{ x } 10^4 \text{ min}$

Select the correct rate law for step 2.

Step 2:
$$O_2 + N_2O_2 \xrightarrow{k_2} NO_2 + NO_2$$

1. rate =
$$k_2[O_2][N_2O_2]$$

2. rate = $k_2[O_2][N_2O_2]/[NO_2]^2$
3. rate = $k_2[O_2][N_2O_2] k_{-2}[NO_2]^2$
4. rate = $k_2[O_2][N_2O_2]/k_{-2}[NO_2]^2$

Select the correct rate law for step 2.

Step 2:
$$O_2 + N_2O_2 \xrightarrow{k_2} NO_2 + NO_2$$

71% 1. rate =
$$k_2[O_2][N_2O_2]$$

13% 2. rate = $k_2[O_2][N_2O_2]/[NO_2]^2$
6% 3. rate = $k_2[O_2][N_2O_2] k_{-2}[NO_2]^2$
9% 4. rate = $k_2[O_2][N_2O_2]/k_{-2}[NO_2]^2$

If the first step is slow and the second step is fast, $k_2[NO] >> k_{-1}$.

> 1. rate = $k_1[NO][Br_2]$ 2. rate = $(k_1k_2k_{-1})[NO]^2[Br_2]$ 3. rate = $2k_1[NO][Br_2]$ 4. rate = $(2k_1k_2k_{-1})[NO]^2[Br_2]$

If the first step is slow and the second step is fast, $k_2[NO] >> k_{-1}$.

16% 1. rate =
$$k_1[NO][Br_2]$$

7% 2. rate = $(k_1k_2k_{-1})[NO]^2[Br_2]$
73% 3. rate = $2k_1[NO][Br_2]$
4. rate = $(2k_1k_2k_{-1})[NO]^2[Br_2]$

rate = $k_{obs}([O_3]/[O_2])$

Order in O_2 ? If $[O_2]$ is doubled/effect on rate?

1. 0 no effect 2. 0 double 3. 1 double 4. 1 multiply by $\frac{1}{2}$ 5. -1 double 6. -1 multiply by $\frac{1}{2}$ 7. -1 multiply by -1

rate = $k_{obs}([O_3]/[O_2])$

Order in O_2 ? If $[O_2]$ is doubled/effect on rate?

2%	1. 0	no effect
<mark>2%</mark>	2. 0	double
10%	3. 1	double
6%	4. 1	multiply by 1/2
<mark>3%</mark>	51	double
73%	61	multiply by ½
4%	71	multiply by -1

If you double both $[O_3]$ and $[O_2]$, the rate will

- 1. not change.
- 2. decrease by half.
- 3. double.
- 4. triple.
- 5. quadruple.

If you double both $[O_3]$ and $[O_2]$, the rate will

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.