Consider the reaction $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{OH}^{-1} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{Br}^{-1}$.

When the concentration of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ is doubled, the rate of the reaction increases by a factor of two. When the concentrations of all reactants and products are doubled, the rate also doubles.

What is the overall order of the reaction?

1. Zero order
2. First order
3. Second order
4. Third order
5. Fourth order
6. Fifth order

Consider the reaction $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{OH}^{-1} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{Br}^{-1}$.

When the concentration of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ is doubled, the rate of the reaction increases by a factor of two. When the concentrations of all reactants and products are doubled, the rate also doubles.

What is the overall order of the reaction?

7\% 1. Zero order $80 \% \quad$ 2. First order
10% 3. Second order
2\% 4. Third order
1\% 5. Fourth order
0% 6. Fifth order

For the same material, does it take longer for 1 ton to go to $1 / 2$ ton or for 1 gram to go to $1 / 2$ gram?

1. It takes longer to go
from 1 gram to $1 / 2$ gram
2. It takes longer to go
from 1 ton to $1 / 2$ ton
3. The conversion times are equal.

For the same material, does it take longer for 1 ton to go to $1 / 2$ ton or for 1 gram to go to $1 / 2$ gram?

1. It takes longer to go
from 1 gram to $1 / 2$ gram
2. It takes longer to go
from 1 ton to $1 / 2$ ton
3. The conversion times are equal.

Which is the correct calculation of the number of nuclei in 1.5 microgram of ${ }^{99} \mathrm{Tc}$?

1. $1.5 \times 10^{-3} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{98 . \mathrm{g}} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}=9.2 \times 10^{18}$
2. $1.5 \times 10^{-6} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{98 . \mathrm{g}} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}=9.2 \times 10^{15}$
3. $1.5 \times 10^{-6} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{99 . \mathrm{g}} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}=9.1 \times 10^{15}$
4. $1.5 \times 10^{-6} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{99 . \mathrm{g}}=1.5 \times 10^{-8}$

Which is the correct calculation of the number of nuclei in 1.5 microgram of ${ }^{99} \mathrm{Tc}$?

$1 \% \quad 1 . \quad 1.5 \times 10^{-3} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{98 . \mathrm{g}} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}=9.2 \times 10^{18}$
$19 \% \quad$ 2. $1.5 \times 10^{-6} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{98 . \mathrm{g}} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}=9.2 \times 10^{15}$
77% 3. $1.5 \times 10^{-6} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{99 . \mathrm{g}} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}=9.1 \times 10^{15}$
$3 \% \quad 4.1 .5 \times 10^{-6} \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{99 . \mathrm{g}}=1.5 \times 10^{-8}$

The y-intercept is equal to:

1. $1 /[\mathrm{A}]_{\mathrm{t}}$
2. $1 /[\mathrm{A}]_{0}$
3. $[\mathrm{A}]_{\mathrm{t}}$
4. $[\mathrm{A}]_{0}$

The y-intercept is equal to:

$$
\begin{array}{cc}
2 \% & \text { 1. } 1 /[\mathrm{A}]_{\mathrm{t}} \\
93 \% & \text { (). } 1 /[\mathrm{A}]_{0} \\
\mathrm{f} \% & \text { 3. }[\mathrm{A}]_{\mathrm{t}} \\
4 \% & \text { 4. }[\mathrm{A}]_{0}
\end{array}
$$

Example(s) of an uni-molecular process

$$
\begin{aligned}
& \text { 1. } \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{gr})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \text { 2. } \mathrm{U}^{238} \rightarrow \mathrm{Th}^{234} \\
& \text { 3. } \mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2} \\
& \text { 4. } 1 \text { and } 2 \\
& \text { 5. } 1 \text { and } 3 \\
& \text { 6. All of the above }
\end{aligned}
$$

Example(s) of an uni-molecular process

7%	1. $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{gr})+\mathrm{O}_{2}(\mathrm{~g})$
15%	2. $\mathrm{U}^{238} \rightarrow \mathrm{Th}^{234}$
1%	3. $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$
64%	:- 4.1 and 2
7%	5. 1 and 3
7%	6. All of the above

MIT OpenCourseWare
|http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

