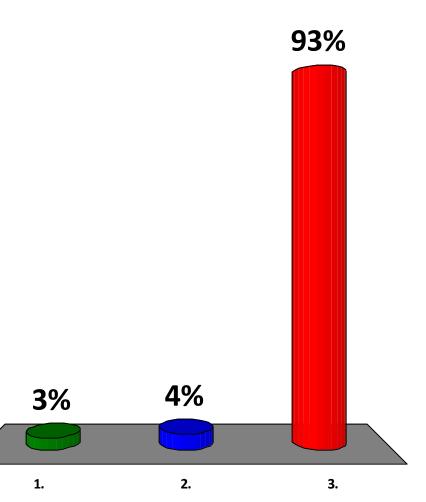
Consider the reaction $C_4H_9Br + OH^{-1} \rightarrow C_4H_9OH + Br^{-1}$.

When the concentration of C_4H_9Br is doubled, the rate of the reaction increases by a factor of two. When the concentrations of all reactants and products are doubled, the rate also doubles. What is the overall order of the reaction?

- 1. Zero order
- 2. First order
- 3. Second order
- 4. Third order
- 5. Fourth order
- 6. Fifth order

Consider the reaction $C_4H_9Br + OH^{-1} \rightarrow C_4H_9OH + Br^{-1}$.

When the concentration of C_4H_9Br is doubled, the rate of the reaction increases by a factor of two. When the concentrations of all reactants and products are doubled, the rate also doubles. What is the overall order of the reaction?


7%	1.	Zero order
80%	2 .	First order
10%	3.	Second order
2%	4.	Third order
1%	5.	Fourth order
0%	6.	Fifth order

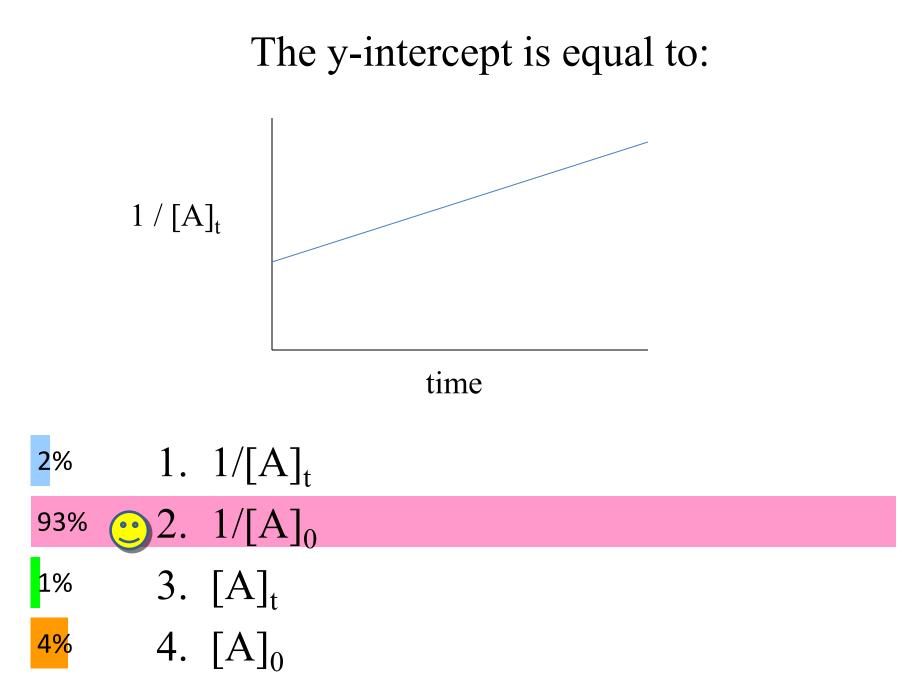
For the same material, does it take longer for 1 ton to go to ½ ton <u>or</u> for 1 gram to go to ½ gram?

- It takes longer to go from 1 gram to ¹/₂ gram
- 2. It takes longer to go from 1 ton to $\frac{1}{2}$ ton
- 3. The conversion times are equal.

For the same material, does it take longer for 1 ton to go to ¹/₂ ton <u>or</u> for 1 gram to go to ¹/₂ gram?

- It takes longer to go from 1 gram to ¹/₂ gram
- 2. It takes longer to go from 1 ton to $\frac{1}{2}$ ton
- 3. The conversion timesare equal.

Which is the correct calculation of the number of nuclei in 1.5 microgram of ⁹⁹Tc?


1.
$$1.5 \ge 10^{-3} \ge x \frac{1 \mod 98. \ge 98. \ge 98. \ge 92. \ge 10^{23} \mod^{-1} = 9.2 \ge 10^{18}$$

2. $1.5 \ge 10^{-6} \ge x \frac{1 \mod 98. \ge 92. \ge 10^{23} \mod^{-1} = 9.2 \ge 10^{15}$
3. $1.5 \ge 10^{-6} \ge x \frac{1 \mod 99. \ge 92. \ge 10^{23} \mod^{-1} = 9.1 \ge 10^{15}$
4. $1.5 \ge 10^{-6} \ge x \frac{1 \mod 99. \ge 92. \ge 10^{23} \mod^{-1} = 9.1 \ge 10^{15}$

Which is the correct calculation of the number of nuclei in 1.5 microgram of ⁹⁹Tc?

1% 1.
$$1.5 \ge 10^{-3} \ge x \frac{1 \mod}{98 \sec} \ge 6.022 \ge 10^{23} \mod^{-1} = 9.2 \ge 10^{18}$$

19% 2. $1.5 \ge 10^{-6} \ge x \frac{1 \mod}{98 \sec} \ge 6.022 \ge 10^{23} \mod^{-1} = 9.2 \ge 10^{15}$
77% 3. $1.5 \ge 10^{-6} \ge x \frac{1 \mod}{99 \sec} \ge 6.022 \ge 10^{23} \mod^{-1} = 9.1 \ge 10^{15}$
4. $1.5 \ge 10^{-6} \ge x \frac{1 \mod}{99 \sec} = 1.5 \ge 10^{-8}$

The y-intercept is equal to: $1 / [A]_{t}$ time

- 1. $1/[A]_t$
- 2. $1/[A]_0$
- 3. [A]_t
- 4. $[A]_0$

Example(s) of an uni-molecular process

- 1. $CO_2(g) \rightarrow C(gr) + O_2(g)$
- 2. $U^{238} \rightarrow Th^{234}$
- 3. $NO_2 + CO \rightarrow NO + CO_2$
- 4. 1 and 2
- 5. 1 and 3
- 6. All of the above

Example(s) of an uni-molecular process

7%	1. $CO_2(g) \rightarrow C(gr) + O_2(g)$	
15%	2. $U^{238} \rightarrow Th^{234}$	
<mark>1</mark> %	3. $NO_2 + CO \rightarrow NO + CO_2$	
64%	<u>•</u> 4. 1 and 2	
7%	5. 1 and 3	
7%	6. All of the above	

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.