#### 5.111 Lecture Summary #21

## Wednesday, October 29, 2014

**Reading for Today**: Sections 11.7-11.9, 11.11-11.12 (10.7 -10.9, 10.11 – 10.12 in 4<sup>th</sup> ed.) **Reading for Lecture #22**: Sections 11.13, 11.18-11.19, 12.1-12.3 (10.13, 10.18-10.19, 11.1-11.3 in 4<sup>th</sup> ed.)

**Topics**: I. Definitions and Relationships between pK<sub>w</sub>, pH, and pOH

II. Strengths of Acids and Bases

III. Equilibrium Acid-Base Problems (Weak Acids and Weak Bases)

### I. Definitions and Relationships between pK<sub>w</sub>, pH, and pOH

Autoionization of water and definition of pK<sub>w</sub>

$$2H_2O(l) \implies H_3O^+(aq) + OH^-(aq)$$
 or  $H_2O(l) + H_2O(l) \implies H_3O^+(aq) + OH^-(aq)$  acid base

How much  $H_2O$  is in a glass of water?  $2H_2O(1) \implies H_3O^+(aq) + OH^-(aq)$ 

$$H^{-}(aq)$$
  $\Delta G^{\circ} = +79.89 \text{ kJ/mol}$ 

$$\ln K = -\Delta G^{\circ}/RT = \frac{-(7.989 \times 10^4 \text{ J/mol})}{(8.3145 \text{ J/Kmol})(298.0 \text{ K})} = -32.24$$

This very\_\_\_\_\_\_value indicates that only a small proportion of water molecules are ionized. Concentration of ions due to autoionization of water is very low, about 1 molecule in 200 million.

$$K = [H_3O^+][OH^-]$$
 This K is called  $K_w$ .

Because  $K_w$  is an equilibrium constant, the product of  $[H_3O^+][OH^-]$  is always 1.0 x  $10^{-14}$  at 298 K.

<u>Note</u>: Because the concentration of the solvent,  $H_2O$ , does not change significantly in a dilute solution, it does not enter the equilibrium expression. The solvent, water, is very nearly pure, and pure liquids and pure solids are not included in equilibrium expressions.

# Definitions of pH and pOH

pH Function: pH = -log \_\_\_\_\_

pOH Function: pOH = -log \_\_\_\_\_

Relationship between pH, pOH and pK<sub>w</sub>

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

$$logK_{w} = log[H_{3}O^{+}] + log[OH^{-}]$$

$$-logK_{\rm w} = -log[H_3O^+] - log[OH^-]$$

$$pK_{w} = _{----} + _{----} = 14.00 \text{ at } 25^{\circ}C$$



#### II. Strength of Acids and Bases

pH of pure water pH = 
$$-\log (1.0 \times 10^{-7}) = 7.00$$
  
pH of an acid solution is \_\_\_\_\_\_  
pH of an base solution is \_\_\_\_\_

EPA defines waste as "corrosive" if the pH is lower than 3.0 or higher than 12.5.

Demo: let's check out the acidity or basicity of common household products.

## Acid Strength

$$CH_3COOH(aq) + H_2O(l) \implies H_3O^+(aq) + CH_3COO^-(aq)$$

The equilibrium constant for an acid in water is termed K<sub>a</sub> (the acid ionization constant)

For this reaction,  $K_a =$ 

The value for  $K_a$  is 1.76 x  $10^{-5}$  at 25°C. This small value tells us that only a small number of  $CH_3COOH$  molecules donate their proton when dissolved in water (weak acid).

Generic expressions for acids in water:

$$HA (aq) + H_2O (l) \implies H_3O^+(aq) + A^-(aq)$$

ACID (HA) IN WATER

$$BH^{+}(aq) + H_{2}O(1) \implies H_{3}O^{+}(aq) + B(aq)$$

ACID (BH+) IN WATER

A strong acid has a K<sub>a</sub> >1 which means that the acid ionizes almost\_\_\_\_\_

A weak acid has a  $K_a$  <1. The reaction with water does not produce many ionized species before equilibrium is reached.

$$pK_a = -log K_a$$

The lower the value of  $K_{a'}$  the higher the value of  $pK_a$ .

 $\begin{array}{cccc} \underline{A \text{ few } K_{\underline{a}} \text{ and } pK_{\underline{a}} \text{ values at } 25^{\circ}\text{C}} \\ \textbf{ACID} & \textbf{K}_{\underline{a}} & p\textbf{K}_{\underline{a}} \\ \text{HI} & \sim 10^{11} & \sim -11 \\ \text{HCl} & \sim 10^{7} & \sim -7 \end{array}$ 

 $H_2SO_3$  1.54 x  $10^{-2}$  1.81 HCOOH 1.77 x  $10^{-4}$  3.75

Base Strength

$$NH_3(aq) + H_2O(l) \implies NH_4(aq) + OH(aq)$$

The equilibrium constant for a base in water is termed K<sub>b</sub> (the base ionization constant)

For this reaction,  $K_b =$ 

 $K_b$  is  $1.8 \times 10^{-5}$  at  $25^{\circ}$ C. This small value tells us that only a small amount of  $NH_3$  ionizes to  $NH_4^+$  and  $OH^-$  in solution. A strong base reacts essentially completely to give  $OH^-$  (aq) when put in water.  $NH_3$  is not a strong base. It is a moderately weak base.

Generic expressions for bases in water:

 $B(aq) + H_2O(1) \implies BH^+(aq) + OH^-(aq)$  BASE (B) IN WATER

 $A^{-}(aq) + H_2O(l) \Longrightarrow HA(aq) + OH^{-}(aq)$  BASE (A<sup>-</sup>) IN WATER

A strong base ionizes almost completely to give OH<sup>-</sup> in water.

$$pK_b = -log K_b$$

larger K<sub>b</sub>, stronger base

# Strength of Conjugate Acids and Bases

The stronger the acid, the \_\_\_\_\_ its conjugate base.

The stronger the base, the \_\_\_\_\_its conjugate acid.

Why this relationship?  $K_a$  and  $K_b$  are related and so are  $pK_a$  and  $pK_b$ .

$$K_a \; x \; K_b \quad = \quad K_w \; = \; 1.0 \; \; x \; 10^{\text{-}14}$$

$$log K_a + log K_b = log K_w$$
 or

$$pK_a + pK_b = pK_w = 14.00$$



An acid/base and its conjugate base/acid can't both be strong.

Strong acids and bases push drive the reaction toward complete ionization:

Strong acid HA (aq) + 
$$H_2O(l)$$
  $\longrightarrow$   $H_3O^+(aq) + A^-(aq)$ 

Strong base B (aq) + 
$$H_2O$$
 (l)  $\longrightarrow$  BH<sup>+</sup> (aq) + OH<sup>-</sup> (aq)

Whereas weak acids and bases are in equilibrium with their conjugates bases and acids:

Weak acid HA (aq) + 
$$H_2O(l)$$
  $\implies$   $H_3O^+(aq) + A^-(aq)$ 

Weak base B (aq) + 
$$H_2O(1)$$
  $\longrightarrow$  BH<sup>+</sup> (aq) + OH<sup>-</sup> (aq)

# III. Equilibrium Acid-Base Problems

- 1. weak acid in water ◀ salt in water
- 2. weak base in water
- 3. strong acid in water
- 4. strong base in water
- 5. buffer

# **Equilibrium Involving Weak Acids**

Example: Vitamin C (ascorbic acid,  $HC_6H_7O_6$ ) has a  $K_a$  of  $8.0 \times 10^{-5}$ . Calculate the pH of a solution made by dissolving 500. mg in 100. mL of water.

$$0.500 \text{ g x } 1 \text{ mol} / 176.126 \text{ g} = 2.84 \text{ x } 10^{-3} \text{ mol}$$

$$2.84 \times 10^{-3} \text{ mol}/0.100 \text{ L} = 0.0284 \text{ M}$$

$$HC_6H_7O_6(aq) + H_2O(l) \implies H_3O^+(aq) + C_6H_7O_6^-(aq)$$

initial molarity change in molarity equilibrium molarity

| $HC_{6}H_{7}O_{6}$      | $H_3O^+$ | $C_6H_7O_6^{-1}$ |
|-------------------------|----------|------------------|
| $0.0\overline{284}^{-}$ | 0 =      | _ 0 _            |
| <u>-X</u>               | +x       | + <u>x</u>       |

$$K_a = 8.0 \times 10^{-5} = \frac{[H_3O^+][C_6H_7O_6^-]}{[HC_6H_7O_6]} = \frac{x^2}{0.0284-x}$$

If x << 0.0284, then  $(0.0284-x) \sim= 0.0284$ .

$$K_a = 8.0 \times 10^{-5} = \frac{x^2}{0.0284}$$

x = 0.00151 (really 2 sf, but carry extra)

Check assumption. Is  $0.0284 - 0.00151 \sim 0.0284$ ?

You can use assumption if x is less than 5% of the value in question (This 5% policy holds for any chemical equilibrium problem, not just acid-base).

Here  $(0.00151/0.0284) \times 100\% = 5.3\%$  (more than 5%), so must use the quadratic equation.

This value is sometimes called the percentage ionized or percentage deprotonated.

Using quadratic eq, x = 0.00147 (really 2 sf)

$$pH = -log [1.47 \times 10^{-3}] =$$

# **Equilibrium Involving Weak Bases**

Example:  $NH_3$  (aq) +  $H_2O$  (l)  $\longrightarrow NH_4^+$  (aq) +  $OH^-$  (aq)  $K_b$  is  $1.8 \times 10^{-5}$  at  $25^{\circ}C$ .

Calculate the pH of a 0.15 M NH<sub>3</sub> solution at 25°C.

base ionization 
$$(K_b) = \underbrace{[NH_4^+][OH^-]}_{[NH_3]} =$$

Using assumption,  $x = 0.001\underline{64}$ 

Check assumption:

$$pOH = -log [OH-] = -log [0.001\underline{6}4] = 2.79$$

# 5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.