

For: NH_3 (aq) + H_2O (l) $\Rightarrow NH_4^+$ (aq) + OH^- (aq)

Fill in the chart below:

 NH_3 (aq) NH_4^+ (aq) + OH^- (aq)

initial molarity 0.15 0 0 change in molarity +x +x +x +x +x +x +x

2. initial molarity 0.15 0 0 change in molarity 0 +x +x equilibrium molarity 0.15 +x +x

3. initial molarity 0.15 0 0 change in molarity -x +x +x equilibrium molarity 0.15-x +x +x

For: NH_3 (aq) + H_2O (l) $\Rightarrow NH_4^+$ (aq) + OH^- (aq)

Fill in the chart below:

 NH_3 (aq) NH_4^+ (aq) + OH^- (aq)

initial molarity

change in molarity

equilibrium molarity

0.15

0

+x

+x

+x

+x

+x

initial molarity 0.15 0change in molarity 0equilibrium molarity 0.15 +x +x

3.
95% initial molarity
0.15
0
change in molarity
-x
equilibrium molarity
0.15-x
+x
+x

When asked to "check assumption," what do you do?

- 1. $0.00164/0.15 \times 100 \% = 1.1 \% (1.1\% \text{ is less})$ then 5%, assumption is okay)
- 2. 0.15 0.00164 = 0.14836 (within sig figs, 0.00164 is small compared to 0.15)
- 3. 0.00164 x 0.15 x 100 % = 0.0246 % (0.0246 % is less then 5%, assumption is okay)
- 4. $(0.15 0.00164) \times 100 \% = 14.8 \% (14.8 \text{ is}$ greater than 5%, assumption is not okay)

When asked to "check assumption," what do you do?

- 1. $0.00164/0.15 \times 100 \% = 1.1 \% (1.1\% \text{ is less})$ then 5%, assumption is okay)
 - 2. 0.15 0.00164 = 0.14836 (within sig figs, 0.00164 is small compared to 0.15)
 - 3. 0.00164 x 0.15 x 100 % = 0.0246 % (0.0246 % is less then 5%, assumption is okay)
 - 4. $(0.15 0.00164) \times 100 \% = 14.8 \% (14.8 \text{ is}$ greater than 5%, assumption is not okay)

3%

7%

9%

Predict whether the pH is acidic, neutral, or basic for a solution of NaCH₃COO(aq).

 K_a of CH_3COOH is 1.76 x 10⁻⁵.

- 1. acidic
- 2. neutral
- 3. Basic
- 4. Not enough information

Predict whether the pH is acidic, neutral, or basic for a solution of NaCH₃COO(aq).

 K_a of CH_3COOH is 1.76 x 10⁻⁵.

- 1. acidic
- ^{9%} 2. neutral
- 72% <u>•</u>3. Basic
- 4. Not enough information

A strong acid and the salt of its conjugate base don't make a good buffer. Why?

- 1. The conjugate base of a strong acid is a **weak** base, and a weak base can't neutralize added acid so pH is not maintained.
- 2. The conjugate base of a strong acid is **ineffective** as a base, and an ineffective base can't neutralize added acid so pH is not maintained.
- 3. The conjugate base of a strong acid is a **strong** base, and a strong base changes the pH.

A strong acid and the salt of its conjugate base don't make a good buffer. Why?

- 1. The conjugate base of a strong acid is a weak base, and a weak base can't neutralize added acid so pH is not maintained.
- 2. The conjugate base of a strong acid is **ineffective** as a base, and an ineffective base can't neutralize added acid so pH is not maintained.
- The conjugate base of a strong acid is a **strong** base, and a strong base changes the pH.

Which is the correct simplified expression for K_a following application of the assumption that x is small compared to 1.00 and 0.500?

1.
$$K_a = 0.500/1.00$$

2.
$$K_a = (x)(0.500+x)/1.00$$

3.
$$K_a = x^2/1.00$$

4.
$$K_a = (x)(0.500)/1.00$$

5.
$$K_a = (x)(0.500)/1.00-x$$

6.
$$K_a = x / 1.00$$

Which is the correct simplified expression for K_a following application of the assumption that x is small compared to 1.00 and 0.500?

1.
$$K_a = 0.500/1.00$$

2. $K_a = (x)(0.500+x)/1.00$
3. $K_a = x^2/1.00$
4. $K_a = (x)(0.500)/1.00$
5. $K_a = (x)(0.500)/1.00-x$
6. $K_a = x/1.00$

Which of the following K_a expressions is correct following the addition of 0.100 mol of HCl?

1.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]$$

 $K_a = (0.400 + x)(x) / (1.10 - x)$

2.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH][H_2O]$$

 $K_a = (0.400 + x)(x) / (1.10 - x)$

3.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]$$

 $K_a = x^2 / (1.10 - x)$

4.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]$$

 $K_a = (0.500 + x)(x) / (1.00 - x)$

Which of the following K_a expressions is correct following the addition of 0.100 mol of HCl?

1.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]$$

 $K_a = (0.400 + x)(x) / (1.10 - x)$

2.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH][H_2O]$$

 $K_a = (0.400 + x)(x) / (1.10 - x)$

3.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]$$

 $K_a = x^2 / (1.10 - x)$

4.
$$K_a = [H_3O^+][HCOO^-]/[HCOOH]$$

 $K_a = (0.500 + x)(x) / (1.00 - x)$

0%

0%

0%

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.