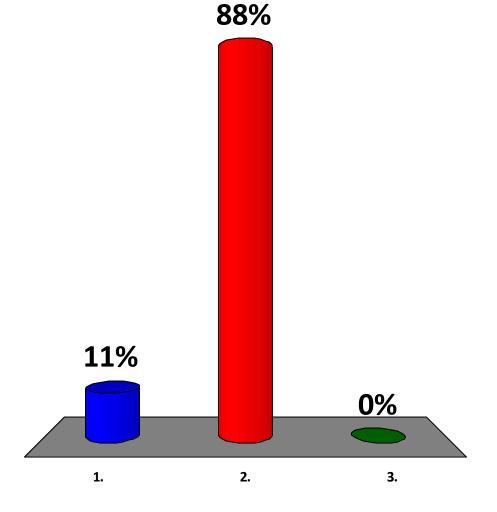

Which of the following statements is true?

- 1. NH3 is the Lewis base and BF3 is the Lewis acid.
- 2. NH3 is the Lewis acid and BF3 is the Lewis base.
- 3. A Lewis base donates lone-pair electrons.
- 4. A Lewis acid donates lone-pair electrons.
- 1 and 3 are true.
- 6. 1 and 4 are true.
- 2 and 3 are true.
- 8. 2 and 4 are true.

1

Which of the following statements is true?


- 1. NH3 is the Lewis base and BF3 is the Lewis acid.
- 2. NH3 is the Lewis acid and BF3 is the Lewis base.
- 3% 3. A Lewis base donates lone-pair electrons.
- 4. A Lewis acid donates lone-pair electrons.
- 57% \checkmark 5. 1 and 3 are true.
- 5% 6. 1 and 4 are true.
- 9% 7. 2 and 3 are true.
- 13% 8. 2 and 4 are true.

Do you expect a large or small value for K if ΔG° is +79.89 kJ/mol?

- 1. K will be large (greater than 1).
- 2. K will be small (less than 1)
- 3. K will be zero.

Do you expect a large or small value for K if ΔG° is +79.89 kJ/mol?

- 1. K will be large (greater than 1).
- 2. K will be small (less than 1)
 - 3. K will be zero.

Identify the reason that the follow expression for K_a is wrong:

$$CH_3COOH (aq) + H_2O (l) \longrightarrow H_3O^+(aq) + CH_3COO^-(aq)$$

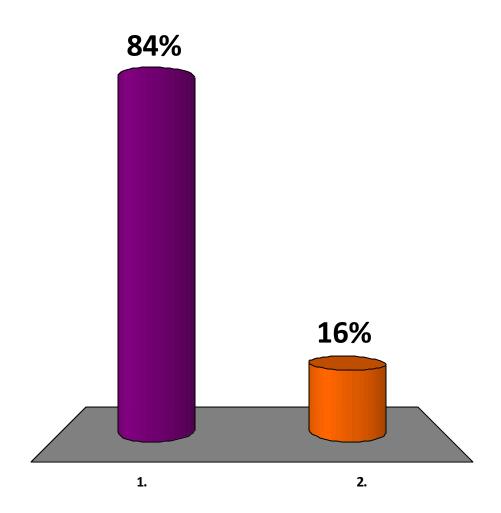
$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH][H_2O]}$$

- 1. The expression should be K= reactions/products
- 2. [H₂O] should not be in the equation
- 3. [CH₃COOH] should not be in the equation
- 4. Neither [H₂O] nor [CH₃COOH] should be in the equation
- 5. Not enough information is given
- 6. The expression is correct

Identify the reason that the follow expression for K_a is wrong:

$$CH_3COOH (aq) + H_2O (l) \longrightarrow H_3O^+(aq) + CH_3COO^-(aq)$$

$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH][H_2O]}$$


- 1. The expression should be K= reactions/products
- 83% \checkmark 2. [H₂O] should not be in the equation
- % 3. [CH₃COOH] should not be in the equation
- 4. Neither [H₂O] nor [CH₃COOH] should be in the equation
- 1% 5. Not enough information is given
- 6. The expression is correct

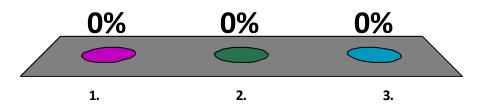
The higher the pK_a, the

- 1. weaker the acid.
- 2. stronger the acid.

The higher the pK_a, the

- 1. weaker the acid.
 - 2. stronger the acid.

For pH = $-\log [1.47 \times 10^{-3}]$, which is correct?


- 1. pH = 2.8
- 2. pH = 2.83
- 3. pH = 2.833

For pH = $-\log [1.47 \times 10^{-3}]$, which is correct?

1.
$$pH = 2.8$$

$$pH = 2.83$$

3.
$$pH = 2.833$$

For: NH_3 (aq) + H_2O (l) $\Rightarrow NH_4^+$ (aq) + OH^- (aq)

Fill in the chart below:

 NH_3 (aq) NH_4^+ (aq) + OH^- (aq)

initial molarity change in molarity equilibrium molarity 0.15

 $+\mathbf{x}$

 $+\mathbf{x}$ $+\mathbf{x}$

 $+\mathbf{x}$

2.

initial molarity change in molarity equilibrium molarity

0.15

0.15+x

 $+\mathbf{x}$ 0.15 $+\mathbf{x}$ $+\mathbf{x}$

0

 $+\mathbf{x}$

3.

initial molarity change in molarity equilibrium molarity

0.15 **-X**

 $+\mathbf{x}$

 $+\mathbf{x}$

() $+\mathbf{x}$

 $+\mathbf{x}$

0.15-x

For: NH_3 (aq) + H_2O (1) $\Rightarrow NH_4^+$ (aq) + OH^- (aq)

Fill in the chart below:

$$NH_3$$
 (aq) NH_4^+ (aq) + OH^- (aq)

1.				
initial molarity	0.15	0	0	
33% change in molarity	+ x	+ X	+ x	
equilibrium molarity	0.15 + x	$+_{\mathbf{X}}$	+ X	

2.			
33% initial molarity	0.15	0	0
change in molarity	0	+ x	+X
equilibrium molarity	0.15	+ x	$+_{\mathbf{X}}$

33%initial molarity

change in molarity

equilibrium molarity

0.15

0

0

-x

+x

+x

+x

When asked to "check assumption," what do you do?

- 1. $0.00164/0.15 \times 100 \% = 1.1 \% (1.1\% \text{ is less})$ then 5%, assumption is okay)
- 2. 0.15 0.00164 = 0.14836 (within sig figs, 0.00164 is small compared to 0.15)
- 3. 0.00164 x 0.15 x 100 % = 0.0246 % (0.0246 % is less then 5%, assumption is okay)
- 4. $(0.15 0.00164) \times 100 \% = 14.8 \% (14.8 \text{ is}$ greater than 5%, assumption is not okay)

When asked to "check assumption," what do you do?

- 1. $0.00164/0.15 \times 100 \% = 1.1 \% (1.1\% \text{ is less then 5%, assumption is okay)}$
- 2. 0.15 0.00164 = 0.14836 (within sig figs, 0.00164 is small compared to 0.15)
- 3. $0.00164 \times 0.15 \times 100 \% = 0.0246 \% (0.0246 \% is less then 5\%, assumption is okay)$
- 4. $(0.15 0.00164) \times 100 \% = 14.8 \% (14.8 \text{ is})$ greater than 5%, assumption is not okay)

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.