LECTURE 18

1. Phosgene (COCl₂) is a chemical warfare agent that decomposes by the reaction:

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$
 K= 8.3 x 10⁻⁴ (at 360°C)

Calculate the [CO], $[Cl_2]$, and $[COCl_2]$ when 10.0 mol of phosgene decompose at 360°C and reach equilibrium in a 5.00-L flask.

$$[CO] = [Cl_2] = x = 0.041 \text{ M}$$

 $[COCl_2] = 2.00 \text{ M} - x = 1.96 \text{ M}$

- **2.** For the reaction in question 1, predict whether the reaction will shift toward products or reactants when the following stress to the system is applied.
- (a) COCl₂ (g) is added. Shift toward products
- (b) Cl₂ (g) is added. **Shift toward reactants**
- **3.** The decomposition of nitrosyl bromide (NOBr) proceeds by the following reaction:

$$2NOBr(g) \implies 2NO(s) + Br_2(g)$$
 $K = 0.0142$

Calculate the [NOBr], [NO], and [Br₂] when 10.0 mol of nitrosyl bromine is placed in a 5.00-L closed vessel and allowed to decompose.

$$[NO] = 0.415 M$$

 $[Br_2] = 0.207 M$
 $[NOBr] = 1.585 M$

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.