LECTURE 16

1. Write a balanced chemical equation for the <u>formation</u> reaction of HCl(g). For the formation of HCl, determine ΔH_r° , ΔS_r° , and ΔG_r° from data below.

Selected thermodynamic data at 25°C from Appendix 2A (Atkins and Jones)

Substance	Mass (g/mol)	ΔH _f ° (kJ/mol)	ΔG _f ° (kJ/mol)	S° (J/Kmol)
Al(s)	26.98	0	0	28.33
$Al_2O_3(s)$	101.96	-1676	-1582	50.92
AlCl ₃ (s)	133.33	-704.2	-628.8	110.67
Cl ₂ (g)	70.90	0	0	223.07
HCl(g)	36.46	-92.31	-95.3	186.76
$H_2(g)$	2.0158	0	0	130.7
$H_2O_2(l)$	34.02	-187.8	-120.35	109.6
$N_2(g)$	28.02	0	0	191.61
NO(g)	30.01	90.25	86.55	210.76
$O_2(g)$	32.00	0	0	205.14
$O_3(g)$	48.00	142.7	163.2	238.93

2. For the reaction: $NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq)$, $\Delta H_r^{\circ} = +28$. kJ/mol and $\Delta S_r^{\circ} = +109$. JK⁻¹mol⁻¹. State whether the reaction will be spontaneous at all temperatures and explain your answer briefly.

- 3. ΔS° is 125 JK⁻¹mol⁻¹ for the reaction $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$. Using the data in table above, calculate S° for $H_2O(l)$.
- **4.** Which of the following statements are true?
- (a) ΔG tells you nothing about the rate of the reaction.
- (b) If $\Delta G_f^{\circ} < 0$, a compound is thermodynamically stable relative to its elements.
- (c) ΔH°_{r} is negative when bonds are stronger in the product than in the reactants.
- (d) Both a and b
- (e) Both b and c
- (f) All of the above.

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.