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PROFESSOR: All right, let's just take 10 more seconds. All right, so someone want to explain why this is the

correct answer? And we have a syringe highlighter. You probably never had something like

this before.

AUDIENCE: OK, so the fourth excited state is n equals 5. And then IE is opposite of the negative number

shown. So it would be a positive reaction.

PROFESSOR: Right. So IE is always going to be positive. And you have to pay attention to what n equals

when you're in the excited state.

So we've been talking about the hydrogen atom and binding energies. What comes out of the

Schrodinger equation? We have the binding energies that come out. And we also have wave

functions. So today we're going to be talking about wave functions, which are often referred to

as orbitals in chemistry, for the hydrogen atom.

So when you solve the Schrodinger equation, you get out this information about wave

functions. And what comes out of it is these quantum numbers. And we already saw quantum

number n coming out. But there are three quantum numbers that are going to come out of the

Schrodinger equation. And those three quantum numbers are necessary to describe the wave

function or the orbital.

So we have n, the principle quantum number. We've already talked about that. And we've

already seen that n is an integer. So I'll just put that down here. So n can equal 1, 2, 3, on to

infinity. So this describes the energy level or the shell.

Then we have l, which we haven't talked about yet. So that's the angular momentum quantum

number. So it tells you about the angular momentum. It also tells you about the subshell or the

shape of the orbital. And so l is related to n. And it can be 0, 1, 2, 3, onward to n minus 1. So

its biggest number is n minus 1.

Then we have m, the magnetic quantum number. And we often see this also listed as m sub l



because m is related back to l. And this is equal to minus l, dot, dot, dot, to 0, dot, dot, dot to

plus l. And m describes the behavior in a magnetic field. It also describes the orientation of the

orbital with respect to an axes. And it tells you about the specific orbital in question. So we

need all three of these to describe any orbital.

All right, so let's look at this in a slightly other way. So we're going to have lots of different sort

of nomenclatures for the same thing. So to describe an orbital, we need those three quantum

numbers. We need n, l, and m. And this can also be expressed as our wave function sub nlm.

And again, we talked about this last time. We're going to talk more about it. So our wave

function is also described by r, the radius, and theta and phi, which are two angles. And we're

going to talk a lot about those today.

So the wave function for the ground state is abbreviated wave function sub 1, 0, 0. Because

it's the ground state. So n equals 1, and l and m are 0. So what you see down here, the 1, 0,

0, refers back to what is n, what is l, what is m.

And this also has another name. So in the terminology of chemists, we call the wave function

1, 0, 0 1s, or the 1s orbital.

So let's look again now at the same things we just talked about, but going through kind of

chemistry lingo. So again, n describes the shell or the energy level. Again, it's integers, 1, 2, 3,

et cetera.

l in chemistry lingo, the subshell or the shape of the orbital. And instead of listing it this way,

we have another way to list it if we're a chemist, and that is s, p, d, f, et cetera. So chemists

like numbers, but we also throw in some letters every once in a while.

And then m, again, designates this orbital orientation or the specific orbital. So for s, there's

only s. It doesn't have any other designation, as we'll talk more about later. But for p, we start

having suborbitals. And there is a difference in terms of the orientation of this. So we have px,

py, pz. So that's what m tells us about. So if we have all three of these numbers, we get down

to the specific orbital, we can say oh, that's pz, for example. So we need all of these three

numbers to define the orbital. And this is in then the chemistry lingo.

All right, also a little bit more chemistry lingo. So here we have l equals 0. So that is the s

orbital. When l equals 1, that's the p orbital. l equals 2 is the d orbital. And l equals 3 is the f

orbital. And frankly we don't really go much beyond that. And in this part of the course, we're



really only going to be talking mostly about s and p orbitals. We get to d orbitals around

Thanksgiving time. So you can look forward to that. And pretty much we're not going to really

talk about f orbitals very much at all. You'll need to know some things about them, but we're

not going to go into them in any kind of detail.

All right, so if we keep going then, we can think about l equals 1 or our p orbitals. And then

when l equals 1, then m can equal 0 plus 1 or minus 1. And when m equals 0, that's by

definition the pz orbital. So when you see m equals 0, that's going to be pz. And when m is

plus 1 or minus 1, those are the px or the py orbitals. And this is just something that you need

to remember, that z is the one that's special. It's the one that has m equals 0.

All right, so we can take all of the nomenclatures now and use it to fill in this awesome table.

So this will help you kind of keep track of all the different ways you can designate the same

things. And we'll fill this in.

So first, state label. What do I mean by this? By this I mean this one 1, 0, 0 to generate this

wave function where we have this 1, 0, 0 listed below the wave function here.

And so now this is just a little color coding. But it's blank in your handout. So n equals 1, so n is

first. l is the second number. And m is the third here. So 1, 0, 0, and what kind of orbital is

this? You can just yell it out.

AUDIENCE: 1s

PROFESSOR: Yep, so that's the 1s orbital. And so the 1, n equals 1, that's 1s. And now we have our binding

energies again. And so we can write those in two different ways. So we saw for the hydrogen

atom before what comes out of the Schrodinger equation, that the binding energy of the

electron for the nucleus is minus the Rydberg constant RH, divided by n squared. And here n

is 1, so divided by 1 squared. So this is just the value for the Rydberg constant, the negative

value. And binding energies, again, are always negative. So we have our first one down.

So now for the second, what number am I going to write here for the state label? You can just

yell it out. Yep, 200 or 2, 0, 0. And then you would put it this way where the state label is by the

wave function. What orbital is this-- 2s.

And then we also know the binding energies for this. So here we have minus RH over n

squared where n is 2, 2 squared. And we saw this number last time.



So we can keep going. Now we have 2, 1, 1. So we can write that down. We can write it both

ways. What orbital is this?

AUDIENCE: [INAUDIBLE].

PROFESSOR: So it's a 2p. And because n is plus 1 and not 0, it's either x or y. Do we have a different or the

same binding energy here? We have the same, right, because it's just over n squared. We're

still talking about n equals 2, so 2 squared. So it's the same value here.

Now we have m equals 0. So we write 2, 1, 0. And now what is that orbital?

AUDIENCE: [INAUDIBLE].

PROFESSOR: 2pz, right, because that's m equals 0, by the definition I gave you. So we know that one for

sure. And again, the energies are going to be the same.

And then the last one, so now we write 2, 1, minus 1. And now it's again a 2p orbital. And it's

either y or x. And the energies are going to be the same.

So these are just a table that kind of interconverts different ways that you will see things

written. And you'll know if you see it one way, what orbital to put down. And we can also think

about the binding energies for those particular orbitals, or for electrons in those particular

orbitals.

All right, so why don't you try a clicker question on this? 10 seconds. Ah, excellent. Right.

So you're getting the hang of this. It's great. Some things, it's always nice when there's some

things that are pretty straightforward. So n equals 5. l equals 1, which means p orbital and m

equals 0, means pz.

So let's think now about these orbitals again. And we looked at that table and saw that if we

were talking about n equals 2, they all seem to have the same energy. So for a hydrogen

atom-- and it will get more complicated when we start talking about things with more than one

electron. But for a hydrogen atom, orbitals that have the same n value have the same energy.

So here we have n equals 1, l equals 0. This is our 1s. We have n equals 2, our 2s, and our 2p

orbitals. n equals 3, we have our 3s, 3p, and 3d. And in this case, all these orbitals are what's

known as degenerate with respect to each other. They have the same energy.



And so for any n with a hydrogen atom, or any one electron system, for n shells, there n

square degenerate-- or for any n there are n squared generate orbitals. So they're all going to

be the same energy. And that changes when we go to more complicated systems. But for

hydrogen, this holds.

So now I'm going to tell you why you should care a little about these energy levels again. And

today you're going to hear in their own words from a graduate student in the physical

chemistry division.

[VIDEO PLAYBACK]

- My name is Benjamin Ofori-Okai. I'm entering my third year of graduate school in the

chemistry department here at MIT. And the work that I've been focusing on for the last couple

of years involves nanoscale magnetic resonance imaging or nano MRI.

When you think of typical MRI, what comes to mind for most people is the image of a brain

scan or a heart scan or some sort of organ scan inside the human body. The way that MRI

works now, the way that you take a picture of anything in your body is you use water. And the

reason that you use water is because it's made up of hydrogen atoms and oxygen atoms. And

hydrogen atoms actually generate a magnetic signal. And so you can take a picture of that.

The idea behind nano MRI is that you want to take a picture. You want to do the same kind of

imaging, but on a considerably smaller scale. We have this probe which is sensitive to local

magnetic fields. And the way that the probe works is that you have these electrons. There's a

ground state for these electrons and two excited states for these electrons, which are actually

degenerate with each other. And degenerate means that they just have the exact same

energy level.

As you move the probe around, anything that's in the environment that generates a magnetic

field will change what the energy levels of these two excited states is. So when you're far

away, there's no change and they're exactly the same. And as you get closer and closer,

these levels start to split. And what we actually care about is what is the splitting between

these two levels, because that's what tells us what the magnetic field is.

In traditional MRI, the probe that we use, the thing that measures the fields, itself is very, very

big. It's person sized. The probe that we're using in this nano MRI is nanometer sized. So this

gives us the ability to look at things that are on the nanometer scale. And to give you a sense



of size, that's like 1/10,000 the width of a human hair. So that includes viruses, cells, parts of

proteins, not just the entire protein.

And on top of that, we'll be able to look within objects. So you're not just sensitive to what's on

the surface. You can actually see how are things-- what's the constitution? What's the makeup

of things within the object that you want to image?

So the long term goal, the one thing that I'd really love to see this technology be able to do is

say, OK, we've got this virus. Let's just see how it works. Let's watch it in real time. Let's see if

we can see how it attaches to cells and invades them and ultimately kills them.

[END PLAYBACK]

PROFESSOR: OK, so I always think this is a great time of year to show this video because pretty much

viruses, I think, start to be on people's minds. Everyone has sinuses and colds and other

things going on. And so understanding, we're still very far away from having a real cure for the

common cold. So I think it's very timely to be talking about, talking about this research.

I'll also use this to remind myself to tell you that if you qualify for extra time on the exam, you

should get me your form for the exam. And it reminded me to say that because Ben, who is a

former TA for this class, always proctors the extra time folks. So you'll get to meet him in real

life if you qualify for extra time on exams.

So hydrogen is in fact important. I'm excited to get on to elements that have more than one

electron. But hydrogen actually does turn out to be extremely important. A lot of imaging, as

you heard from Ben, is based on hydrogen. So we're spending a lot of time on hydrogen, but

hydrogen really, really is an important element.

So continuing on now, what is the significance of this wave function? Why do we care about

this? And so really, we're interested in trying to understand not just how tightly the electron is

bound to the nucleus, but kind of how the electrons exist around the nucleus. And so the wave

function really gets at this. It gets at the probability density, the likelihood that you'll find an

electron at a certain location, the probability per unit volume.

And again, this is a three dimensional problem. So our wave function depends on a radius r.

But it also depends on two angles, the theta and phi. And so you can kind of think of those as

latitude and longitude if you will. And so we want to know what the probability is that an

electron will be at a certain r, theta, and phi position in a particular small unit volume in that



area. How well can we understand where the electron is? And this gives rise to a lot of the

properties of the elements. So probability density, density per unit volume.

So really, when we're talking about where electrons are, we're thinking about a shape of an

orbital, a shape of a probability density of where that electron might be. So now we're going to

think about shapes.

So we can define a wave function in terms of two properties, a radial wave function and an

angular wave function. So again, the wave function has these three things. We are considered

with a radius and these two angles. So we can rewrite this, breaking up these two different

components-- the radial component that depends on the radius-- so that's easy to remember,

radial, radius-- and the angular component that depends on the angles. So the nomenclature

here is pretty good. All right, so we have these two components.

So now I'm going to show you a table that is largely from your book. Don't let it scare you. You

do not need to memorize any of these things. And I'm showing this to you because I want you

to believe me about certain properties of these two functions. So here they are solved. You

can look them up. Actually I think we just typed a new copy of this so it was easier to see. If

you find any typos, please let me know.

But there's a couple of important points. So on this side, we have the radial wave function, and

over here we have the angular wave function, for various values of n and l. So again, not an

exhaustive list here. And a lot of these are written in terms of a0, which is the Bohr radius,

which is a constant, 52.9 picometers.

All right, so now let's just consider the ground state. So we'll start with that lowest energy state

or most stable state, the 1s orbital for the hydrogen atom. So we have our wave function 1, 0,

0 here. And this is 1s up here. Again, n equals 1. l equals 0. So that's 1s. And z for hydrogen

atom is 1. So I've gotten rid of all z's to make it a little simpler.

So here we have the radial wave function times the angular wave function, which is listed up

here. And the thing that I really want you to notice is that for all of the s orbitals, this is a

constant. So this is always the angular component for all s orbitals. And in fact, there are no

angular components in there. So all 1s, 2s, 3s, all have this same constant.

And that leads to a very important property of s orbitals, which is that they're spherically

symmetrical. In other words, they're independent of those angles, of theta and phi. And so that



means that the probability of finding the electron away from the nucleus is just going to

depend on r. There's only r in this equation. The angles are not part of the equation. So s is

spherically symmetrical. The probability of finding the electron just depends on the radius.

So we can draw a picture, or multiple pictures, of what that could look like. And these are three

common plots. So I'll tell you that on your handout, the plots are listed on one page, and then

the plots are shown on the next page. And I'm going to kind of go back and forth between

things. So the plots-- don't have to write this down. They're on the other page. But if you want

to pay attention to which kind of plot goes with which plot.

So these are three different ways to, quote, visualize. And some people say, can you give me

another visualization? We're really just trying to think about probabilities of finding electrons

here. And so you can't sort of take a picture of an orbital. So these are just different ways to

help people think about that possible distribution of electrons around the nucleus.

All right, so one thing that everyone's feeling pretty good about is that it should be spherically

symmetric hole for an s orbital. And so we have a circle. And so the probability density, which

is shown in this plot-- and the probability density parts are basically just dots where the more

concentrated the dots are, the higher the probability density for that particular-- the probability

for that particular volume exists. So in here there are sort of more dots and then less dots as

you come out. And so that is a circle, which is what? It's symmetrical. So you can always

recognize a 1s. You have this symmetrical thing. So this is the wave function squared, is this

probability density plot.

Another kind of plot that you can see looks at the radial wave function plotted against the

distance r here, distance from the nucleus. And then a third kind of plot is another probability

plot, like this one up here. But instead of the dots indicating the higher probability density, you

have a radial probability distribution. And so at the nucleus, at 0, well then the probability goes

up. The electron is not going to crash into the nucleus, so it won't be right on top of the

nucleus. But as you get out a little bit farther away, there's a high probability that it's there. And

then that decreases again.

So the top one and the bottom one both talk about the probability of finding an electron in a

particular unit. And I'll give you just a little more definition of this. And this is on the same page

above those different plots.

So the radial probability distribution reports on the probability of finding an electron in the



spherical shell at some little distance dr from the origin. And one thing that comes out of this,

which is pretty important, is the most probable value for that distance r, which is denoted rmp,

so most probable distance. And for a hydrogen atom, this is a0, the Bohr radius. And you can

see it expressed in different units over here. And from the plot, that will be the top part of the

plot, the most probable distance. In this case, that's the Bohr radius for the hydrogen atom.

So we have now these three different kinds of plots that you'll see. And I want to point out that

they're different plots. Sometimes people are thinking that there is sort of one plot and they're

trying to read one of them as probability density, and that's not what it is. So we'll look at these

again.

All right, so going back and we'll just look at them again now that we sort of talked about what

all of them are, again, we have our sort of dot density, probability density plot, our wave

function plot, and our radial probability distribution plot. And for 1s, we have the dots closer to

the nucleus here. Probability goes up and goes down. And here, you're thinking about this as

the amplitude of finding an electron as you move away from the nucleus. So 1s is pretty

simple. And I think these plots are a lot more meaningful when we go on to look at other

orbitals.

So let's think about those other orbitals. And we'll finish the other plots. So this is just-- you can

actually stay, in this case. So we're going a lot of back and forth today. So here is your table

that we had before. And here's 1s. Here's 2s. Here's 3s. These terms are in fact different, as

you can see. But the angular term, as we mentioned before, is still the same. So that means

2s and 3s are still symmetrical. So we're still thinking about the probability of finding an

electron in some volume as just going out as a distance of r.

So let's look now at the three plots, and compare those plots. And this is the one on your

handouts we looked at. I showed you this. And now we have all of these three plots together

here. And in the comparison of these three, I think it helps differentiate what you're seeing in

these plots.

So important point, they're spherical. 1s, 2s, 3s, they're all spherical. And here we see the dot

density increase. And then the dot density goes to 0. And that's known as a node. So a node is

a value of r or theta or phi for which the wave function and wave function squared, or the

probability density, is 0. And in this particular case, the type of node that we're seeing is a

radial node. And so that's a value of r for which the wave function, wave function squared



probability density is 0.

So it goes to 0. We have a node, a radial node. Then there's more probability. And then it

increases, and then starts decreasing again. And so if you plot this with the radial wave

function versus r, you see it go down. And it crosses the zero line here. And that's the node.

And that's at 2a0. And then it goes back up.

And this plot often bothers people. They're saying, what, there's now negative probability? No,

these are not the probability diagrams. This is thinking about the amplitude of finding an

electron. So we don't have to worry. It can have a positive or a negative phase to it. And if you

look at this plot, the radial probability distribution plot, then you'll see that actually the radius,

the most probable radius is in this region over here. And you see that this is concentrated dots

up here.

So if we think about these two, which are really probability distribution diagrams, we're thinking

about the probability of finding an electron. You have a probability in here close to the nucleus.

Then you get a node. And then you have another probability, high probability of finding the

electron. In fact that's the most probable radius here for 2s. And then it decreases.

So this line shows you what a radial node looks like in all three plots. In this probability

diagram, wave function squared plot, it looks like there's just an empty space, no dots at all.

Down here, it's where it crosses the line. And in the bottom plot, it is where you go up and

down and again touches the line before going back up. So you should be able to look at these

plots and think about what they mean.

For 3s, we see the same thing. But now we have an intense spot in the middle near the

nucleus. That is indicated down here. There is probability of finding the electron near the

nucleus. Then there's a node. And that's in this plot where it crosses the line and in this plot

where you have the empty space. Then you have more probability of finding the electron. You

have another bump here. And then we have another node, indicated by touching the zero line

here, touching here. That's at 7.1a0. And then we have more probability of finding the

electron. And this is where the most probable radius is at 11.5.

So again, you need to be able to look at these diagrams and recognize what constitutes a

radial node. And a node is a place where there is no probability that you're going to find an

electron.



So now let's think about how many nodes, or radial nodes you should have when you have

different types of orbitals. And this is just a similar diagram to what I just showed. This is the

wave function squared, probability diagram. And now instead of blue you have orange dots,

but otherwise should be the same-- so for 1s, for 2s, and 3s.

So for the 1s orbital, we can calculate how many radial nodes that we should have by using

this handy formula, n minus 1 minus l. So for 1s we have 1 minus 1. And l is 0. So we have

zero radial nodes. And we can see that from that diagram there are zero radial nodes.

2s now-- 2, n is 2. Minus 1, minus 0-- so that's one radial node. And the radial node, again, in

this kind of diagram is the empty space. And that radial node is at 2a0.

For 3s, we have n equals 3 minus 1 minus l, which is still 0. So we have two radial nodes. And

so again, the empty space here at 1.9a0 and then at 7.1a0. So why don't you give this a try

now and tell me what kind of radial nodes you would expect for 4p.

OK, 10 seconds. These are pretty fast. Yep. So again, we have to do n, which is 4, minus 1.

And then what is l in this case-- 1. So that gives you 2. All right, so 4 minus 1 minus 1 or 2

radial nodes.

All right, don't put your clickers away. Let's try something else. So now tell me which of these is

correct both in terms of the indicated number of radial nodes and in terms of the plot for a 5s

orbital.

All right, let's just do 10 more seconds. We're varying it up in terms of the plots. So maybe

someone want to say what the right answer is here? Yeah?

AUDIENCE: So by the formula we just did, that has four radial nodes. And if you look at the graph of one,

there's three, and then there's another one at the origin. So that's four radial nodes. Right?

Right?

PROFESSOR: Actually, I just realized that-- let me count here. So this answer here, we should have four

radial nodes. That is correct because we have n minus 1 minus l. Actually, I think this is going

to this-- this should be going to this answer, because if we count 1, 2, 3, 4. Sorry, the new plot

is highly confusing. I have to count.

So the one at the origin should actually not count.



AUDIENCE: It doesn't count?

PROFESSOR: This is not a node. So we have 1, 2, 3, 4, should be our four radial nodes. Because that's a

nucleus, and there isn't one there. But that doesn't count as a node. So this should be here. I

guess that's-- right. But thank you very much, and [INAUDIBLE], here. You were brave enough

to answer. Yeah, there's a question?

AUDIENCE: Should there also be a certain number of peaks in the graph as well as nodes?

PROFESSOR: Yeah. So if you look at the peaks, these are really hard to draw. And I think that's partly what

the problem is. But when we look later in the handout where they're drawn a little bit more

carefully, it does increase. So there are different numbers. So we'll have nodes going down

here. But then we'll have more distributions. But often the ones as you go along, it does

indicate where the most probable radius is as the taller ones, and that it's usually drawn at the

end. So we have some plots and I'll point this out later. We're going to look at more plots, don't

worry.

So if anyone's good at drawing those, let me know, because they're really hard to draw. So a

lot of them are copied from the book, but then they don't copy very well.

So let's consider other kinds of nodes. And we're going to come back to radial nodes. All right,

so what about p orbitals? So here we have our table again. These are our p orbitals over here.

And we have our n equals 2 cases here and our l equals 1. So these are x, y, and z-- so our

3p orbitals over here. And the important point is not to memorize what these values are. But

now all of a sudden we have dependence on angles.

So we're going to have an angular component to these. And that means the probability density

as you go out from the nucleus doesn't just depend on r anymore. It depends on theta and

phi, which are sort of the equivalent to latitude and longitude, if you're thinking about

geography.

All right, so let's see what that looks like. So that means then the p orbitals are not spherically

symmetric, because it depends on angle. So you just don't go out and have the probability

depend on the radius and it's symmetrical in all the different directions.

And here are what some of them look like. These figures are in your handouts. Here are some

other figures. So the orbitals consists of two lobes. So you could view this as a lobe up here

and a lobe down here. Or you have these lobes as these two different colors over here. And



the lobes are separated by a nodal plane. And the nodal plane is a plane on which the

probability of finding the electrons is 0.

So in the top drawing, the nodal plane is drawn as a plane. And in the bottom drawings, you

don't see a plane. You just see an empty space between the lobes. So empty space here,

empty space here, empty space there. And so if it helps you to kind of think about an actual

plane in between, that's good. Or you can just think that there's a break between these nodes.

And again, the nodal plane, there's no probability of finding an electron in the nodal planes.

And the nodal planes are at the nucleus. Therefore, there is zero probability of finding a p

electron at the nucleus. s can get pretty close to the nucleus. But with a p orbital, there's a

nodal plane there. No electrons are going to be at the nucleus.

So now if you're going out from the nucleus, the probability of an electron, finding it, if you're

going out in this direction, you're not going to do very well. If you're going in this direction, you

should do a lot better. So here the angular components really matter. That defines the shape

of the orbital. And where you're going, what direction you're going in, what angles you're going

in matters in terms of whether you're going to find that electron or not.

So another way to think about this in sort of these nodal planes-- so here we'll just define what

plane it is. So we have our pz orbital. That's a nodal plane then in x and y. And so x and y are

over here. Our px orbital is going to be in-- or the nodal plane is going to be in yz plane, so

over here. And py will be in xz plane. So again, these nodal planes, there's no electron density

there. And these arise from these angular nodes in the wave function.

So angular nodes then or these angular nodal planes are values of theta and phi for which the

wave function, wave function squared are 0. So this is very different from the s case where we

only had radial nodes. But now, when in the p orbitals where the angular component matters,

they're angular nodes as well.

So we can think about how to calculate the angular nodes. So total nodes is going to be equal

to n minus 1. The angular nodes is l. And as we saw before, the radial nodes are n minus 1

minus l.

So let's have more practice in calculating these. And then we'll look at some more diagrams.

So for 2s, total nodes-- and you can just yell this out. Total nodes will be what?



AUDIENCE: 1

PROFESSOR: 1-- 2 minus 1 or 1. Angular nodes are?

AUDIENCE: 0

PROFESSOR: 0. For 1s, there is none. And if you forget, l equals 0 there. Radial nodes is going to be?

AUDIENCE: 1

PROFESSOR: Right, 2 minus 1 minus 0, or 1. All right, let's try 3-- or sorry, 2p is next. Total nodes? 1 again,

so 2 minus 1 or 1. Angular nodes? 1-- l equals 1 here. And radial node? Right, 2 minus 1

minus 1, or 0. So since there's only one total node, if you figured out there was one angular

node, you could even realize that there had to be zero there. It's a way to check maybe your

equations.

All right, so let's try for 3d now. How are we doing? All right, let's just do 10 more seconds.

And let's just work that out over here. So total nodes for 3d, we have 3 minus 1 or 2. Angular

nodes, l equals 2 for d. So radial nodes, we have 3 minus 1 minus 2, or 0.

All right, so bring these handouts on Wednesday because we need to go back and look at

more radial probability diagrams. And talk more about nodes.

All right, let's just do 10 more seconds. OK, good job everyone.

Let's look through this a little bit. And you can sort of-- everyone can help. Yell out some

responses. So this was 2s. And that was the correct answer. Which type of orbital is this-- 2p.

And if you couldn't read this information here, you should have been able to read the

information about the nodes. What equation is that for nodes? Yeah, n minus 1 minus l, for

what kind of nodes?

AUDIENCE: Radial.

PROFESSOR: Radial nodes, right. So if you know what it means if l equals 0 versus l equals 1, and you knew

this was l, then you could tell if it was an s orbital or a p orbital. And then whether it was 2 or

3p is from the n. So even if you couldn't read this, if you knew that expression, then you were

OK.

What kind of orbital was in plot C? This was a 3s. l equals 0. And then this is a what, 3p and? l



equals 2. Louder. D, right? So do 3px, 3py, and 3pz have different plots? No, they wouldn't

have different plots.

So we'll continue to look at this. And we're going to be starting with the handout from last time.

And so let's continue with Monday and continue with these radial probability distributions.

So this is again from Monday, page 6. We're talking about orbital size. And we've already

looked at this a little bit today. So we should be able to go through this now in a little bit more

detail. You've already thought about it.

So here we have the 2s orbital. And we're going to have one node using our equation that you

just told me, n minus 1 minus l. And when we go from 2s to 2p, here we have no radial nodes.

And we can look at r and p, which is the radius of the maximal probability of finding an

electron. And you can note that when you go from the 2s to the 2p, the radius actually

decreases. So the most probable radius for 2p is less than that of 2s.

Now let's consider the 3, n equals 3. So we have the 3s situation over here. And so l equals 0.

We have two nodes here. And now if you look at the radius, the axis over here, you'll see that

the most probable for 2s is close to 5a0, where a0 is the Bohr radius. And over here you're

talking between 10 and 15. So we see an increase in size going this way.

And then when we go from 3s to 3p-- so here we have 3 minus 1 minus l, which is 1. So we

have one node, down to 3d, 3 minus 1 minus 2, zero nodes. And you see that there is a

decrease here in the most probable radius. So, OK, interesting.

All right, so 3d has the smallest, next 3p, next 3s. So there's two different trends we're seeing.

One, as we increase l within the same n number, and one going from a smaller value of n to a

larger value, and then again within the 3, within the n value as we change l.

So again, to say the same thing in a different way, as n increases from 2 to 3, the radius, most

probable radius or the size increases. So from here to here we have an increase in size. I just

want to make sure people have time to kind of get all of this down, but it should be good. I

have a little picture that just shows they're very different in size.

So we'll go back to this again. And then as I also said, as l increases for a given n-- so from l

equals 0 to l equals 1 here, then we have a decrease in the size. So you can see the most

probable radius moves over. And then here is another within n. And n equals 3. We see,



again, this decrease. So those are the two trends that you observe when you look at these

radial probability distributions.

So for exam one next week, you should be able to draw distributions like this. You should be

able to tell me how many radial nodes you have for different types of orbitals. And you should

know these trends in size. So I think in the exam instructions it says up to a 5 case. You don't

have to go on forever to be able to draw them, but you should be able to look at these and tell

what kind of orbital it is and where the nodes are, be able to draw where the nodes are-- one

node here, one, two, one node here. This kind of thing will be on the exam next week.

So there's something that's a little counterintuitive when it comes to this size issue. And that

has to do with how this correlates to the amount of shielding, and as we see later, to the

energy levels.

So only electrons in the s state here really have any kind of substantial probability that they'll

be close to the nucleus. So we have this little blip over here that is close to the nucleus, that at

are very small radii, very small values of r. Even though the most probable is out here, if we

compare 3s to 3p and look at where the electrons are that are closest to the nucleus, they're

quite a bit farther away than in the 3s. Or there's more probability that there's going to be

some closer here. And then the closest probability over here for these electrons is quite a bit

farther away. So we see these circles kind of move out.

So even though the overall radius, the sort of size of the whole thing is decreasing, the

probability that there are going to be electrons really close is actually going in the opposite

direction. And so what this means is that s electrons are the least shielded because there's

higher probability that they'll be some close to the nucleus. There's more penetration close to

the nucleus. So s electrons are the least shielded.

And we're going to come back to this when we move on to today's handout. This is really

important in terms of thinking about the energy levels. And I'm going to have these diagrams

on the handout for today. So we'll see them again.

All right, so before we move to that handout, we've got to finish our quantum numbers and talk

about electron spin. So the fourth quantum number describes the spin on the electron. And we

already saw the magnetic quantum number m. We saw m sub l. And now we have m sub s.

And the s stands for spin. So there's some nomenclature that actually makes sense.



So there are two possible spin values for an electron. And s can equal plus 1/2, spin up, or

minus 1/2, spin down. And here are some little pictures of that.

So this ms term, this spin magnetic quantum number, completes the description of the

electron. But it's not dependent on the orbital. To describe an orbital completely, you only

need three quantum numbers. But to describe the electron, you need four.

And that is shown, again, here on this picture, or on this slide. You need three quantum

numbers. You need n, l, and m sub l to describe the quantum number, describe the orbital

completely. But you need a fourth one, this m sub s to describe the electron. So if you see

wave function n, l, m sub l, you say that's telling me what the orbital is. And if we add the m

sub s, then you look at that and say oh, that's going to tell me all the way to the electron what

is going on.

So this final quantum number led to what we know as Pauli's exclusion principle, which is that

no two electrons can have the same four quantum numbers. They can't have the same-- no

two electrons can have the same spin, in other words.

So if we are drawing a configuration for neon with 10 electrons, we are going to have with one

electron being up spin, the next one is going to be down. Because if we had two of these both

going up, they would have the same four quantum numbers. And that's not allowed by Pauli's

exclusion principle.

So when you have two here, one spin up, one spin down in an orbital, then we say that those

electrons are paired. And an important thing that kind of comes out of all of this is that one

orbital can't hold more than two electrons. If it did, there'd be another electron that would have

the same four quantum numbers. Because you need three quantum numbers to describe the

electron, or the orbital. We need three to describe, say, that it's n equals 1, and then its s

state. So we need those other ones to describe the orbital and then the fourth one to describe

the spin. So if we add another electron, you'd have two that were spin up, say. And that just

wouldn't work. So you cannot have more than two electrons in the same orbital.

And this makes a lot of sense when you think about why you would be putting electrons in

orbitals that are higher energy. Why not just keep putting him in the low energy orbital? And

it's because you can't do that. You can't put more than two electrons in. And so therefore once

you've filled a lower energy orbital, you've got to move up to the next lowest energy orbital.


