MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

5.111 Lecture Summary \#6

Readings for today: Section 1.9 (1.8 in $3^{\text {rd }} \mathrm{ed}$) - Atomic Orbitals.
Read for Lecture \#7: Section 1.10 (1.9 in $3^{r d} \mathrm{ed}$) - Electron Spin, Section 1.11 (1.10 in $3^{\text {rd }}$ $e d)$ - The Electronic Structure of Hydrogen.

Topics: Hydrogen Atom Wavefunctions
I. Wavefunctions (orbitals) for the hydrogen atom $(\mathrm{H} \underline{\Psi}=\mathrm{E} \underline{\Psi})$
II. Shapes of H -atom wavefunctions: s orbitals
III. Radial probability distributions

ENERGY LEVELS (continued from Lecture \#5)
The Rydberg formula can be used to calculate the frequency (and also the E or λ, using $E=h \nu$ or $\lambda=c / v$) of light emitted or absorbed by any 1-electron atom or ion.

$$
\begin{gathered}
v=\frac{\mathrm{Z}^{2} \mathrm{R}_{\mathrm{H}}}{\mathrm{~h}}\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right) \quad v=\frac{\mathrm{Z}^{2} \mathrm{R}_{\mathrm{H}}}{\mathrm{~h}}\left(\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}\right) \\
\text { for } \mathrm{n}_{\mathrm{i}}>\mathrm{n}_{\mathrm{f}}
\end{gathered} \quad \text { for } \mathrm{n}_{\mathrm{f}}>\mathrm{n}_{\mathrm{i}} .
$$

$\mathrm{n}_{\mathrm{f}}>\mathrm{n}_{\mathrm{i}}$ in \qquad . Electrons absorb energy causing them to go from a lower to a higher E level.
$\mathrm{n}_{\mathrm{i}}>\mathrm{n}_{\mathrm{f}}$ in \qquad . Electrons emit energy causing them to go from a higher to a lower E level.

I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM

When solving $H \Psi=E \Psi$, the solutions are E_{n} and $\Psi(\mathrm{r}, \theta, \phi)$.
$\Psi(\mathrm{r}, \theta, \phi) \equiv$ stationary state wavefunction: time-independent In solutions for $\Psi(\mathrm{r}, \theta, \phi)$, two new quantum numbers appear! A total of 3 quantum numbers are needed to describe a wavefunction in 3D.

1. $\mathrm{n} \equiv$ principal quantum number
$\mathrm{n}=1,2,3 \ldots \ldots \infty$
determines binding energy
2. $\quad l \equiv$ angular momentum quantum number

$$
l=
$$

l is related to n largest value of $l=n-1$ determines angular momentum
3. $\mathrm{m} \equiv$ magnetic quantum number
$\mathrm{m}=$
m is related to l
largest value is $+l$, smallest is $-l$
determines behavior of atom in magnetic field
To completely describe an orbital, we need to use all three quantum numbers:

$$
\Psi_{\mathrm{n} l \mathrm{~m}}(\mathrm{r}, \theta, \phi)
$$

The wavefunction describing the ground state is \qquad .
Using the terminology of chemists, the Ψ_{100} orbital is instead called the "__" orbital.
An orbital is (the spatial part) of a wavefunction; \mathbf{n} (shell) l (subshell) \mathbf{m} (orbital)
$\boldsymbol{\ell}=\mathbf{0} \Rightarrow$ __ orbital $\quad \boldsymbol{\ell}=\mathbf{1} \Rightarrow$ __ orbital $\quad \boldsymbol{\ell}=\mathbf{2} \Rightarrow$ __ orbital $\quad \boldsymbol{\ell}=\mathbf{3} \Rightarrow$ __ orbital
for $\boldsymbol{\ell}=1: \quad \mathrm{m}=0$ \qquad orbital, $\mathrm{m}= \pm 1$ states combine to give \qquad and \qquad orbitals

	State label	wavefunction	orbital	E_{n}	$\mathrm{E}_{\mathrm{n}}[\mathrm{J}]$
$\mathrm{n}=1$					
$\boldsymbol{\ell}=0$					
$\mathrm{~m}=0$					

For a \qquad orbitals with the same n value have the same energy: $E=-R_{H} / n^{2}$.

- Degenerate \equiv having the same energy
- For any principle quantum number, n, there are \qquad degenerate orbitals in hydrogen (or any other 1 electron atom).

Energy Level Diagram

9 degenerate states at second
E [J]

-0.242×10^{-18}	$\overline{\mathrm{n}=3}$	$\overline{3}$								

excited energy level

1 state at ground energy level

 1 s state described by ψ_{100} or 1 s
II. SHAPES OF H-ATOM WAVEFUNCTIONS: S ORBITALS

THE PHYSICAL INTERPRETATION OF A WAVEFUNCTION

Max Born (German physicist, 1882-1970). The probability of finding a particle (the electron!) in a defined region is proportional to the square of the wavefunction.

$$
\begin{gathered}
{\left[\Psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)\right]^{2}=\text { PROBABLITY DENSITY }} \\
\text { probability of finding an electron per unit volume at } \mathrm{r}, \theta, \phi
\end{gathered}
$$

To consider the shapes of orbitals, let's first rewrite the wavefunction as the product of a radial wavefunction, $\mathrm{R}_{\mathrm{n} l}(\mathrm{r})$, and an angular wavefunction $\mathrm{Y}_{\mathrm{lm}}(\theta, \phi)$

$$
\left.\Psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)\right]=\ldots
$$

for a ground state H -atom:

$$
\Psi_{100}(\mathrm{r}, \theta, \phi)=\underbrace{\frac{2 \mathrm{e}^{-\mathrm{r} / \mathrm{a}_{0}}}{\mathrm{a}_{0}^{3 / 2}}}_{\mathrm{R}^{(r)}} \times \underbrace{\left.\frac{1}{4 \pi}\right]^{1 / 2}}_{\mathrm{Y}(\theta, \phi)}=\frac{\mathrm{e}^{-\mathrm{r} / \mathrm{a}_{0}}}{\left(\pi \mathrm{a}_{\mathrm{o}}^{3}\right)^{1 / 2}}
$$

where $\mathrm{a}_{0}=$ \qquad $(a$ constant $)=52.9 \mathrm{pm}$

- For all s orbitals ($1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}$, etc.), the angular wavefunction, Y , is a \qquad .
- s-orbitals are spherically symmetrical - independent of \qquad and \qquad .

Probability density plot of s orbitals: density of dots represent probability density

Figures by MIT OpenCourseWare.

NODE: A value for r, θ, or ϕ for which $\Psi\left(\right.$ and $\left.\Psi^{2}\right)=$ \qquad . In general, an orbital has $\mathrm{n}-1$ nodes.

RADIAL NODE: A value for \qquad for which $\Psi\left(\right.$ and $\left.\Psi^{2}\right)=0$. In other words, a radial node is a distance from the radius for which there is no probability of finding an electron.

In general, an orbital has $n-1-l$ radial nodes.
1s: $\quad 1-1-0=0$ radial nodes
2s: ________ radial nodes
3s: \qquad - \qquad - \qquad $=$ \qquad radial nodes

III. RADIAL PROBABILITY DISTRIBUTION

Probability of finding an electron in a spherical shell of thickness $d r$ at a distance r from origin.

Radial Probability Distribution (for s orbitals ONLY) $=4 \pi r^{2} \Psi^{2} d r$

We can plot the radial probability distribution as a function of radius. Radial probability distribution for a hydrogen 1s orbital:

Maximum probability or most probable value of r is denoted $r_{m p}$.

$$
\mathrm{r}_{\mathrm{mp}} \text { for a } 1 \mathrm{~s} \mathrm{H} \text { atom }=\mathrm{a}_{0}=0.529 \times 10^{-10} \mathrm{~m}=0.529 \AA \quad \mathrm{a}_{0} \equiv \mathrm{BOHR} \text { radius }
$$

1913 Niels Bohr (Danish scientist) predicted quantized levels for H atom prior to

But, an electron does not have well-defined orbits! The best we can do is to find the probability of finding e^{-}at some position r .

Knowing only probability is one of main consequences of Quantum Mechanics. Unlike CM, QM is non-deterministic. The uncertainty principle forbids us from knowing r exactly.

