MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #6

Readings for today: Section 1.9 (1.8 in 3rd ed) – Atomic Orbitals. **Read for Lecture** #7: Section 1.10 (1.9 in 3rd ed) – Electron Spin, Section 1.11 (1.10 in 3rd ed) – The Electronic Structure of Hydrogen.

Topics:Hydrogen Atom WavefunctionsI. Wavefunctions (orbitals) for the hydrogen atom $(H\Psi = E\Psi)$ II. Shapes of H-atom wavefunctions: s orbitalsIII. Radial probability distributions

ENERGY LEVELS (continued from Lecture #5)

The Rydberg formula can be used to calculate the frequency (and also the E or λ , using E = hv or $\lambda = c/v$) of light emitted or absorbed by any 1-electron atom or ion.

$$\nu = \frac{Z^2 R_H}{h} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \qquad \nu = \frac{Z^2 R_H}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$

for $n_i > n_f$

for $n_f > n_i$

 $n_f > n_i$ in _____. Electrons absorb energy causing them to go from a lower to a higher E level.

 $n_i > n_f$ in ______. Electrons emit energy causing them to go from a higher to a lower E level.

I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM

When solving $H \Psi = E \Psi$, the solutions are E_n and $\Psi(r, \theta, \phi)$.

 $\Psi(\mathbf{r},\theta,\phi) =$ stationary state wavefunction: time-independent In solutions for $\Psi(\mathbf{r},\theta,\phi)$, two new quantum numbers appear! A total of 3 quantum numbers are needed to describe a wavefunction in 3D.

- 1. n = principal quantum number $n = 1, 2, 3 \dots \infty$ determines binding energy
- 2. l = angular momentum quantum number

```
l = \frac{l}{l \text{ is related to n}}
largest value of l = n - 1
determines angular momentum
```

3. m = magnetic quantum number

m = _______ m is related to *l* largest value is +*l*, smallest is –*l* determines behavior of atom in magnetic field

To completely describe an orbital, we need to use all three quantum numbers:

$$\Psi_{n/m}(r,\theta,\phi)$$

The wavefunction describing the ground state is _____. Using the terminology of chemists, the Ψ_{100} orbital is instead called the "___" orbital.

An orbital is (the spatial part) of a wavefunction; **n(shell)** *l*(**subshell**) **m(orbital**)

$\boldsymbol{\ell} = 0 \Rightarrow _$	_orbital	$l = 1 \Rightarrow __$	orbital	$l = 2 \Rightarrow _$	_orbital	l = 3 =	> or	bital
for <i>l</i> = 1:	m = 0 _	orbital,	$m = \pm 1$	states com	oine to gi	ve	and	orbitals

	State label	wavefunction	orbital	E_n	$E_n[J]$
n = 1					
$\boldsymbol{\ell}=0$		Ψ_{100}		$-R_{\rm H}/1^2$	-2.18×10^{-18} J
m = 0					
n = 2					
$\boldsymbol{\ell}=0$					-5.45×10^{-19} J
m = 0					
n = 2					
l = 1					-5.45×10^{-19} J
m = +1					
n = 2					
l = 1	210	ψ_{210}		$-R_{\rm H}/2^2$	-5.45×10^{-19} J
m = 0					
n = 2					
l = 1	21-1	ψ_{21-1}		$-R_{\rm H}/2^2$	-5.45×10^{-19} J
m = -1					

For a ______, orbitals with the same n value have the same energy: $E = -R_H/n^2$.

- **Degenerate** = having the same energy
- For any principle quantum number, n, there are _____ degenerate orbitals in hydrogen (or any other 1 electron atom).

II. SHAPES OF H-ATOM WAVEFUNCTIONS: S ORBITALS

THE PHYSICAL INTERPRETATION OF A WAVEFUNCTION

Max Born (German physicist, 1882-1970). The probability of finding a particle (the electron!) in a defined region is proportional to the square of the wavefunction.

> $[\Psi_{n/m}(r,\theta,\phi)]^2 = PROBABLITY DENSITY$ probability of finding an electron per unit volume at r, θ , ϕ

To consider the shapes of orbitals, let's first rewrite the wavefunction as the product of a radial wavefunction, $R_{n}(\mathbf{r})$, and an angular wavefunction $Y_{lm}(\theta,\phi)$

 $\Psi_{n/m}(\mathbf{r},\boldsymbol{\theta},\boldsymbol{\phi})] = \underline{\qquad} \mathbf{x}$

for a ground state H-atom:

$$\Psi_{100}(\mathbf{r},\theta,\phi) = \underbrace{2e^{-\mathbf{r}/\mathbf{a}_{o}}}_{\mathbf{a}_{o}^{3/2}} \mathbf{x} \left[\underbrace{\frac{1}{4\pi}}_{\mathbf{q}} \right]^{1/2} = \underbrace{\frac{e^{-\mathbf{r}/\mathbf{a}_{o}}}{(\pi \mathbf{a}_{o}^{3})^{1/2}}}_{\mathbf{R}(\mathbf{r})} \mathbf{x} \left[\underbrace{\frac{1}{4\pi}}_{\mathbf{q}} \right]^{1/2} = \underbrace{\frac{e^{-\mathbf{r}/\mathbf{a}_{o}}}{(\pi \mathbf{a}_{o}^{3})^{1/2}}}_{\mathbf{R}(\mathbf{r})}$$

where $a_0 =$ _____ (a constant) = 52.9 pm

- For all s orbitals (1s, 2s, 3s, etc.), the angular wavefunction, Y, is a ______.
- s-orbitals are **spherically symmetrical** independent of _____ and ____.

Probability density plot of s orbitals: density of dots represent probability density

NODE: A value for r, θ , or ϕ for which Ψ (and Ψ^2) = _____. In general, an orbital has n -1 nodes.

RADIAL NODE: A value for _____ for which Ψ (and Ψ^2) = 0. In other words, a radial node is a distance from the radius for which there is no probability of finding an electron.

In general, an orbital has n - 1 - l radial nodes.

1s: 1-1-0=0 radial nodes

2s: _____ – ____ = ____ radial nodes

3s: _____ – ____ = ____ radial nodes

III. RADIAL PROBABILITY DISTRIBUTION

Probability of finding an electron in a spherical shell of thickness dr at a distance r from origin.

Radial Probability Distribution (for s orbitals ONLY) = $4\pi r^2 \Psi^2 dr$

We can plot the radial probability distribution as a function of radius. Radial probability distribution for a hydrogen 1s orbital:

Maximum probability or most probable value of r is denoted r_{mp} .

 r_{mp} for a 1s H atom = $a_0 = 0.529 \times 10^{-10} \text{ m} = 0.529 \text{ Å}$ $a_0 = BOHR$ radius

1913 Niels Bohr (Danish scientist) predicted quantized levels for H atom prior to

But, an electron does not have well-defined orbits! The best we can do is to find the probability of finding e^- at some position r.

Knowing only probability is one of main consequences of Quantum Mechanics. Unlike CM, QM is non-deterministic. The uncertainty principle forbids us from knowing r exactly.

5