
 VII. Porous Media 
 

Lecture 36: Electrochemical Supercapacitors 

 

1. Transmission Line Model for Linear Response 
 
Last time, we took the ‘supercapacitor limit’ of a general porous medium theory for thin double 
layers based on three assumptions: 
 

1) The electrolyte concentration remains nearly constant during charging of the electrode, 
(ionic conductivity in pores). 

2) Faradaic reactions are negligible or can be lumped together with double-layer capacitance 
as an additional “pseudocapacitance”, as we will discuss in the next lecture. 

3) Voltage applied is small enough ( ), that the total interfacial capacitance per area 

is roughly constant  CD ≈ const . 
 
Under these conditions, the model reduces to two elegant linear PDEs: 
 

 
 

where  is the electron potential,  is ion potential, is macroscopic electron 

conductivity in conducting phase, is macroscopic ionic conductivity in pores, is double 
layer area per volume. Then we define resistance and capacitance as sketched in Fig .1. Electron 

resistance per length is , ion resistance per length , and double layer 

capacitance per length , where A is the macroscopic electrode area, and L is the 
electrode length, from separator to current collector.  
 
Substituting these definitions above, we arrive at a pair of linear PDES 
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which can be interpreted as an RC transmission line, as shown in Fig .2. 



Once these PDEs are solved for the potentials of ions and electrons, the charge density (per 
length) stored in the double layer capacitors is given by 

Boundary conditions for these two PDEs are as follows: We set reference pore potential at the 

separator , ions carry current from separator, thus . Similarly, at 

the back side of the electrode (current collector) , where is the half of the total 
voltage if symmetric electrodes are used for the whole cell. At the current collector, the current is 

totally carried by electrons, therefore . 

Initial condition: suppose electrode is in equilibrium with I=0, and charge density is constant 
. 

2. Analysis of the Model 

Next we go back to the 2 PDEs to do some change of variables, and solve for an example of the 
supercapacitor which is suddenly applied to a voltage (i.e., ). 
Although the PDEs look simple (two diffusion-like equations), the boundary conditions are quite 
nontrivial and couple opposite sides of the electrodes. 
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Fig. 1 Geometric parameters of the porous electrode 

Fig. 2 Transmission Line Equivalent Circuit Model 
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1.1 Total current (subtracting the 2 PDEs) 

Subtract these 2 PDEs, 

We will have , integrate once we get . Actually, this 

constant is the total current, which is carried by both ions and electrons inside the electrode. 

Using boundary conditions to integrate again, we will get the following expression which is valid 
for all time and space. 

Where 

Using boundary condition we will get: 

1.2 Charge density (adding the 2 PDEs) 

Adding the original 2 PDEs, we will get: . 

Charge stored in the double layer is also a function of space and time as , so 
the above equation can be equivalently written as 

Since we know after suddenly applying the voltage to ,  has not started to 
change and needs some time to diffuse through the transmission line, we still have 

, therefore from  we get 
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Thus, . Recall , finally we will have 

So the initial conditions are: 

The linear initial profiles of the two potentials correspond to the initially uniform electric field in 
both phases, due to the sudden imposition of a voltage across the electrode, from the separator to 
the current collector. 

And  implies , or equivalently . This is 

the initial total current induced by applying the voltage . 

1.3 Numerical simulation results 

Following are numerical simulation results when we set initial, equilibrium voltage to zero 
and apply a constant voltage V starting at t=0. 

From Fig.3 we see that pore potential and ion potential both change from their 
linear initial conditions to the final uniform profile those are consistent with the boundary 
conditions. Charge stored in the double layer gradually increases with time, until it is fully 
charged. The charge profile is symmetric in space when (Fig.4).  And Fig. 5 shows 

consistency with the expression we got before ( ), that is, the weighted 

summation of two potentials are always linear in space. 
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Fig. 3 Numerical simulation of electron potential and pore potential development 
as time progresses. ( are used for this plot) 

Fig. 4 Numerical simulation of double layer charge density as time progresses. 
( are used for this plot) 
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Fig. 5 Numerical time evolution of sum of the electron and ion potentials, whose gradient is proportional 

to the total current.  (
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 are used for this plot) 
 

2. Voltage Sweep 
 
Now we consider cyclic voltammetry, where a periodic linear voltage sweep is applied to the 
system ( ), with to be the voltage scan time scale.  

 
Fig. 6 Voltage applied for a cyclic voltammetry 

 
2.1 Slow sweep 
 

If the voltage scans slowly, there will be no transient effects ( ), then 
(where L is the length of the electrode, and C is double layer 

capacitance per length). In this case, current which reflects capacitance is simply a constant, and 
the cyclic voltammetry will be rectangles (Fig. 7). 
  

 

 



Fig. 8 Cyclic voltammetry in slowly scanned case when double layer 
differential capacitance follows GCS model. 

2.2 Fast sweep 

If the voltage scans fast, pore ion dynamics will typically be slower than the relatively fast 
electron relaxation in conducting phase ( ), and we can safely assume 

. Then the governing equation becomes: 
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Fig. 7 Cyclic voltammetry in slowly scanned case when differential capacitance is a constant. 

When the scan rate S increases, the CV window becomes a larger rectangle with large height. 

If the double layer capacitance is a function of voltage applied rather than a constant, 
, then the current reflects the  information: 

For example, in GCS model we have where and 

. 
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This is simply a diffusion problem, with the solution shown in Fig. 9. 

Fig. 9 Pore potential 
We can also do a scaling analysis for the current. 

, voltage

evolution when electrons quickly relaxed in the conducting phase. 

We can easily see that for , which is transient effects 

in the CV scan curves Fig. 10). 

If the voltage sweeps fast and the double layer differential capacitance follows GCS model, the 
cyclic voltammetry will be a combination of the transient effects with the differential double 
layer capacitance shape (Fig. 11).  In the CV curve, there is a peak after the transient region 
which might be easily treated as a Faradaic reaction peak, but actually, it can just come from the 
differential double layer capacitance and the transient effect. Thus, it is really hard to identify 
peaks in complicated cases, especially for pseudocapacitors when double layer capacitance and 
Faradaic capacitance coexist. 
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Fig. 10 Cyclic voltammetry in fast scanned case when differential capacitance is a constant. 

Fig. 11 Cyclic voltammetry in fast scanned case when double layer 
differential capacitance follows GCS model. 
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