
IV. Transport Phenomena 

Lecture 20: Warburg Impedance 

Notes by ChangHoon Lim

1. Warburg impedance for semi-infinite oscillating diffusion 

Warburg (Ann. Physik. 1899) is credited with the first solution to the diffusion equation with 
oscillating concentration at the boundary, which is related to the diffusional (or mass transfer) 
impedance of electrochemical systems. An interesting point made in the first part of the class is 
that the very same mathematical model and impedance formula also holds for capacitive 
charging of a porous electrode with constant electrolyte concentration (i.e. no diffusion) modeled 
by an RC transmission line, and this effect is often mistaken for diffusional impedance. 

We start by linearizing the equations for transport and electrochemical reactions to describe the 
response to a small oscillating voltage. 

Suppose 

equation, ) and 

for linear response (e.g. Nernst 

Also, assume quasi-equilibrium reactions at x=0 and linear diffusion. 

Alternating current: 

Therefore, 

Hence, (  as ) 

Thus, impedance is 

, 
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Now, C=C0 is imposed on x=L, not at the infinity. At low frequency ( ), FLW acts like a 
resistor. This situation is depicted in above figure. 

Solve with C=0 at x=L. 

The general solution is . 

B=0 due to C(x=L) =0. Thus, 

, 

Hence, the impedance is, 

, 

Lecture 20: Warburg impedance 10.626 (2011) Bazant 

This is the same result as an infinite RC transmission line because the mean potential satisfies the 
same form of linear diffusion equation. 

2. Finite Length Warburg Impedance (FLW) for Fuel Cells 

(also called “open boundary finite-length Warburg” impedance) 

For oscillating diffusion layer, the characteristic length is . 
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and 

Then, dimensionless impedance is 

Hence, this is similar to the following circuit, except in the transition region: 

Warburg at high frequency 

Resistor cutoff at low frequency 

The Nyquist plot is, 
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This behavior can be clearly seen in impedance spectra for PEM fuel cells, as shown in the next 
figure. 
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Figure: (a) Nyquist plots of the impedance of a PEM fuel cell with a Nafion 113 membrane taken 
at different operating voltages (which leads to different surface concentrations, as explained in 
previous lectures). The data can be described well by the circuit in (b), where the low-frequency 
arc on the right comes from a finite-length Warburg impedance with resistance cutoff, given by 
the formula above. In this case, the double layer capacitance is replaced by a constant-phase 
element (CPE) attributed to RC transmission line effects, since it is distributed along a porous 
electrode/membrane interface. 
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Still, general solution is . 

With  , A=0. 
, 
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3. FLW Impedance for Li-ion Batteries
 (also called “blocked boundary finite-length Warburg impedance”) 

Now apply a zero flux Neuman BC at x=L instead of Dirichlet BC, to represent the finite end of 
intercalation particle. At higher frequency, this system has the same Warburg impedance as 
before. However, this system acts as a capacitor at low frequency at this time. Schematic figure 
is as follows. 
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Use the same notation as before. Then, dimensionless impedance is 

This is similar to the following circuit except in the transition region 
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The Nyquist plot is, 
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The last figure shows a clear example of the preceding model to describe the diffusion of lithium 
ions in silicon nanowires, used as anode intercalation material (due to their ability to 
accommodate the large elastic coherency strain associated with Li intercalation in silicon). The 
system is well described by a Randles circuit consisting of a parallel RC element for the double 
layers in series with a finite-length Warburg element for diffusion in the nanowires. By 
approximating each nanowire as 1D “pseudofilm” for diffusion, the formula above can be used 
to infer the diff
dimensionless). 

usivity of lithium in silicon, e.g. from the limiting low-frequency resistance (=1/3 

Figure: Impedance spectrum (Nyquist plot) for a silicon nanowire anode in a Li-ion battery, 
which is well described by a parallel RC element for the double layer (high frequency “surface 
resistance”) in series with a finite-length Warburg element with capacitive cutoff (low frequency 
“diffusion element”).
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