
Figure 1. Lattice sites with particles (black) and holes (white) 

The entropy of the system, defined by the great physicist Ludwig Eduard Boltzmann (1844-
1906) is 

where kB is Boltzmann’s constant and is the number of distinguishable (degenerate) states of 
the system. This assumes an “ideal solution” or “ideal mixture” of particles and holes. 

In the thermodynamic limit, we let N and Ns-N go to infinity with the filling fraction 

held constant and use Stirling’s formula: 

II. Equilibrium Thermodynamics 

Lecture 7: Statistical Thermodynamics 

Open circuit voltage of galvanic cell is 

To understand compositional effects on , we need to consider some simple statistical model. 

1. Lattice gas 

We consider a “lattice gas” of N indistinguishable finite-sized particles (Ns-N indistinguishable 
holes) confined to a lattice of Ns available fixed lattice sites. 
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A notation: f(x) ~ g(x) as , which we read “f(x) is asymptotic to g(x) as ” 

means 
. 

The derivation of Stirling’s formula is shown at appendix. 

In the thermodynamic limit, 

Define the entropy density per site as with the filling fraction 

Therefore, in the thermodynamic limit, 


More generally, for an “ideal solution” of M components/species (i=1, 2,…, M) and holes


where 

2. Electrochemical potential 

Suppose the N particles have charge ze and feel a mean electropotential 

Then, the total Gibbs free energy is 

At constant T, P and , 

The electrochemical potential per particle, defined as the change in Gibbs free energy per 
particle, is 

where g=G/Ns is Gibbs free energy per site. Using g, s, and h=H/Ns 
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where . Thus, 

For lattice gas, 

Hence, 

The electrochemical potential for lattice gas is 

More generally, for an “ideal solution” of M components/species (i=1, 2,…, M) and holes 

where 

3. Dilute Solutions 

In dilute limit, for ideal mixing, 

More generally, 
where and fi are activity coefficients. 

[Note] 

, 
: Absolute activity 

In dilute electrolytes, the dominant non-ideality comes from the electrostatic attractions between 
opposite charge ions in the neutral bulk solution, which tend to lower the total free energy. Later 
in the class, we will use the dilute solution theory of electrolytes to derive the Debye-Huckel 
formula 
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where  is dimensionless ionic strength (a measure of the salt concentration). The 

excess chemical potential decreases like the square root of the ionic strength at low concentration 
and saturates at high concentration. 

4. Concentrated Solutions 

At high concentrations, more complicated expressions for the activity coefficient arises because 
of the various short-range interactions in addition to long-range electrostatic interactions. 

A) Lattice gas (or solid) 

, where 

where   is the total filling fraction. The excess chemical potential in this case1 

as 

    diverges at close packing and has a linear dependence at low volume fraction. The latter 
dependence is a direct proportionality since each particle on a lattice excludes only its own 
volume. 

B) Hard spheres of identical size as a model for short range repulsion in a liquid

     This excess chemical potential is well approximated by the Carnahan-Starling EOS (equation      
of state) up to roughly 0.55 total volume fraction2 

as 

     The expansion at low volume fraction shows that the contribution to excess chemical 
potential for hard spheres is 8 times that of a lattice gas, which expresses the geometrical fact 
that a sphere excluded 8 times its own volume for other identical spheres. The plot below shows 

1 The application of this model to describe finite-sized charged particles was proposed by 
Grimley and Mott (1947) for ionic crystals, leading to a continuum theory equivalent to that of 
Bikerman (1942), which we will cover later in the class. It has also recently been used to model 
ionic liquids (Kornyshev 2007) and dilute electrolytes subjected to large voltages (Kilic, Bazant, 
Ajdari 2007), where the large electric field leads to crowding near a highly charged surface. 

2 This model has been applied to electrolyte by Lue et 1999 and other recent authors. It neglects 
non-local correlation effects, but captures some features of highly concentrated electrolytes. For 
a review see Bazant, Kilic, Storey, Ajdari, Advances in Colloid and Interface Science (2009). 
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Figure 2. Excess chemical potential (dimensionless) as a function of packing fraction [1] 

[Appendix: Derivation of Stirling’s formula] 

A systematic way to derive Stirling’s formula starts with the following definite equation 

Consider the integrand when N is large. Then is a rapidly increasing function of 
t, while is a rapidly decreasing function of t. Hence, the product F exhibits a sharp maximum 
for some value t=t0. To find this maximum, 

Therefore, t0=N. However, only values of t in the vicinity of t0=N contributes to the above 
integral because F has the sharp maximum. To find an expression for F near t0=N, write t=N+x 
(x<<N) and expand lnF by using a Taylor expansion around t0=N. 

that excluded volume effects are much larger for hard spheres, not only at low volume fraction, 
but even more so at high volume fraction. The CS approximation breaks down, however, above 
roughly 0.55. Since it diverges only at 1.0, it is clear that it does not capture the jamming/glass 
transition of randomly packed hard spheres, around 0.63, or the maximum crystal volume 
fraction (for the face-centered-cubic lattice) at 0.74. 

Courtesy of MIT Student. Used with permission.
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And, 

Hence, Or 

Put this integrand into the integral, 

This is the Stirling’s formula. 

If N is very large, lnN<<N. (For example, N=NA=6x1023, Avogadro’s number, then lnN=55)


Thus, in the thermodynamic limit, 
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