
I. Equivalent Circuit Models 

Lecture 6: Impedance of Electrodes 

MIT Student (and MZB)

1. Flat Electrodes 

In the previous lecture, we leant about impedance spectroscopy. Electrochemical impedance 
spectroscopy is the technique where the cell or electrode impedance is platted versus frequency. 
Thus, the impedance is measured as a function of the frequency of the AC source. 

Electrochemical impedance spectroscopy is a useful method for investigating porous 
electrodes, which are extensively used in the field of batteries, fuel cells, and electrochemical 
capacitors. With the impedance spectroscopy analysis, we can characterize various electrodes in 
terms of AC frequency and model the equivalent RC circuits. In this lecture, we start with flat 
electrodes shown to Figure 6.1 to learn how the impedance spectroscopy can be applied to the 
analysis of electrodes. 

Figure 6.1 Schematic of a flat electrode cell which is composed of a neutral bulk 
electrolyte and thin double layers, where L is the electrode spacing and λD is Debye 
Screening Length (double layer thickness) 
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a. Ideally conducting electrodes 

In flat electrode cells, if faradaic reactions occur fast and the charge transfer resistance 
negligible, we can only consider the bulk capacitance and bulk resistance. Under the assumptions, 
the equivalent RC circuit of the flat electrode cell can be expressed as shown in Figure 6.2. 

Figure 6.2 Equivalent RC circuit of ideally conducting electrodes or ideally non-
polarizable cell, where Cb is the bulk or geometrical capacitance per area and Rb is the 
bulk resistance per area. 

The bulk capacitance per area, Cb, can be calculated by ε/L, where ε is the permittivity of 
electrolyte and L is the electrolyte spacing. The bulk resistance per area, Rb, can be expressed by 
L/σb, where σb is the conductivity of electrolyte. In addition, we can set the bulk time scale for 
charge relaxation as τb, which can be obtained by, 

Normally, the time scale is a range of MHz. As we leant in the previous lecture, the impedance of 
the equivalent RC circuit can be expressed by, 

As a dimensionless form, the impedance can be alternatively expressed by, 

Where, the dimensionless impedance  and the dimensionless frequency . The 

corresponding Nyquist plot can be obtained in terms of the dimensionless frequency  as Figure 
6.3.
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Figure 6.3 Nyquist plot of the equivalent circuit for ideally conducting electrodes 

In the mean time, it is useful information that the linear transformation of the dimensionless 
impedance should trace out a semicircle. Let’s consider a linear transformation impedance 
which is expressed by, 

When we plot the impedance on Nyquist domain, it can be known that the impedance traced out 

the unit circle, that is , so can be obtained when is translated by +1 and stretched by 

1/2 . 

b. Ideally blocking electrodes 

If flat electrode cells don’t have faradaic reactions, current leads to capacitive charging of the 
double layers. Thus, we should consider the double layer capacitance when the equivalent circuit 
is determined. In other words, it can be deserved that the cell has ideally polarizable electrodes. 
In this case, the equivalent RC circuit can be drawn as Figure 6.4. 

Figure 6.4 Equivalent RC circuit for the ideally polarizable electrodes, where CD is the 
double layer capacitance per area and can be obtained by CD=ε/λD. 

The double layer charging time scale can be considered as and we can 

know that the time scale of the double layer charging is much longer than that of the bulk 
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charging relaxation due to much thinner double layers than the electrode spacing. As the same 
way to the ideally conducting electrodes, we can express the impedance and the corresponding 
dimensionless form as, 

With the impedance forms, two limits of and can be considered and we 
can get simplified forms of the dimensionless impedance for the two limits as 

From the limits, we can easily imagine the corresponding Nyquist plot which has two different 
regimes shown as Figure 6.5. 

Figure 6.5 Nyquist plot of ideally blocking electrodes 

c. Partially polarizable electrodes 

Until now, we studied about two ideal electrodes of no charge transfer resistance with fast 
faradaic reactions and no faradaic reactions. Then, in the case of flat electrode cells which have 
not-fast faradaic reactions, how can we express the RC circuit and Nyquist plot? In this case, we 
can say the electrodes as partially polarizable electrodes, so the faradaic charge-transfer 
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resistance, RF, and double layer capacitance, CD, should be considered, simultaneously. Based on 
the consideration, the RC circuit can be expressed as shown in Figure 6.6. 

Figure 6.6 Equivalent RC circuit of partially polarizable electrodes 

As the same way to the previous ones, the impedance can be expressed by, 

Depending on the speed of faradaic reactions, we can imagine different forms of Nyquist plot for 
the equivalent RC circuit. Figure 6.7(a) shows a typical Nyquist plot of partially polarizable 
electrodes. When faradaic reaction speeds are fast, the Nyquist plot can be as Figure 6.7(b) and it 
can be considered as blocking electrodes. With the increase of the faradaic reaction speed, the 
charge transfer resistance decreases and the Nyquist plot become the same to that of ideally 
conducting electrodes, shown in Figure 6.3, at the limit of RF →0. In contrast, in the case of slow 
faradaic reactions, the Nyquist plot is shaped as Figure 6.7(c) and we can expect that conducting 
electrodes show the shape. The slower faradaic reaction speed makes the higher value of the 
charge transfer resistance and the Nyquist plot eventually has the same to that of ideally blocking 
electrodes, shown in Figure 6.5, at the limit of RF →∞. 
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(a) 

(b) 

(c) 

Figure 6.7 Nyquist plots of cells with partially polarizable electrodes . (a) Balanced bulk 
and Faradaic resistances, (b) more highly conducting electrodes with relatively large bulk 
resistance, (c) nearly blocking electrodes with relatively small bulk resistance. 

2. Porous Electrodes 

Porous electrodes have been used for various applications since porous electrodes have 
many advantages especially for electrochemical systems such as capacitors and batteries. First of 
all, porous electrodes provide large surface areas which become interfaces between electrodes 
and electrolytes, resulting in high capacitances and compensating slow electrochemical reactions. 
In this chapter, we will build up equivalent RC circuits for two types of porous electrodes and 
study about corresponding Nyquist plots, leading to constant-phase elements (CPEs) with special 
phase angles (π / 4  and π / 8 ). We will also discuss an impedance formula that has a constant 
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phase element with arbitrary phase angle by employing a self-affine fractal model for a rough 
electrode surface. These models show that microstructural complexity in rough or porous 
electrodes can lead to CPE behavior, and we will close by noting that similar behavior can also 
result for flat electrodes with adsorption or reaction processes possessing a broad distribution of 
relaxation times. 

a. Homogeneous microstructure 

When an electrode is composed of homogeneous micro-porous structures as shown in Figure 
6.8(a), we can construct the equivalent RC circuit model with the surface impedance per length, 
Zs, and the resistance of pore electrolyte per length, Rp, induced by ionic conductions in 
electrolyte. To simplify the problem, we assume that the electronic conduction in metal is 
sufficiently fast to neglect the resistance and the assumption is reasonable for normal electrode-
electrolyte cells. In the previous lecture, the homogeneous microstructured electrode which has 
thin double layers compared to the pore thickness can be expressed by the transmission line 
model in single microscale as shown in Figure 6.8(b). 

(a) 

(b) 

Figure 6.8 Schematic of homogeneous pore in single microscale (a), the equivalent 
transmission line model of the homogeneous microstructured porous electrodes with thin 
electric double layers 

If we can assume that the transmission line is infinite, the total impedance, Z, can be expressed 
as Figure 6.9. 
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Figure 6.9 Total impedance of the infinite transmission line model can be considered as 
the same to the recursive model adding a surface impedance per length and a resistance 
of pore electrolyte per length to the total impedance 

From the recursive model, the total impedance of Z can be expressed and two limits can be 
considered as following equation, 

Where, and 

(i) Smooth pore walls 

To determine the surface impedance, we can separately consider the transmission line as 
two different wall surface conditions. First, let’s consider smooth pore walls which have single 
length scale pores as shown in Figure 6.8(a). The corresponding transmission line can be 
composed of capacitances of surfaces per length, Cs, and the resistances of pore electrolyte per 
length, Rp, as shown in Figure 6.10. 

Figure 6.10 Equivalent transmission line of the homogeneous microstructures which 
have smooth pore walls 

In the transmission line, the surface impedance can be expressed as so that 

we can obtain the total impedance and consider two limits as following forms, 
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The corresponding Naquist plot can be as Figure 6.11 and we can confirm that the impedance 
curve with respect to frequency is a hyperbola. 

Figure 6.11 Naquist plot of smooth pore walls 

If electrodes have a finite length, at very low frequencies, , charging propagates 

across the entire porous electrode of length L, and the electrode behaves like a pure capacitance, 
C=CsL. The Nyquist plot of the finite length porous electrode can be shown as Figure 6.12. 

Figure 6.12 Nyquist plot of finite length porous electrodes 

(ii) Porous pore walls 

9



Lecture 6: Impedance of electrodes 10.626 (2011) Bazant 

In the previous section, we built the equivalent RC circuit model in smooth pore walls, 
which have single length scale of pores. Then, let’s suppose the electrode has two different 
length scales of pores such as that a single large length scale pore has a lot of small scale of pores 
on the surface as shown in Figure 6.13. 

Figure 6.13 Schematic of a pore which has porous pore walls 

In this case, we can consider a simple model letting the surface impedance, Zs, is close to the 
surface resistance which is much higher than the pore electrolyte resistance. With the assumption, 

the dimensionless total impedance, , has a close value to and we can model small pores 

by an array of transmission lines. Finally, we can obtain the dimensionless total impedance as 
blow, 

The corresponding Nyquist plot can be obtained as shown in Figure 6.14. 

Figure 6.14 Nyquist plot of a pore which has porous pore walls 
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From the study of the porous electrodes, we can figure out the impedances have a form of 
, where A and β are constant values, at low frequencies. The impedance form is 

normally called as a constant phase element. According to the values of β, we can classify the 
impedance form with four cases. First, β=1/2 is called as Warbug impedance for a simple RC 
transmission line or diffusion limitations, which will be learnt in the future lecture. Second, 
0<β<1 can be due to complex microstructure of the surface or anomalous diffusion or reaction 
kinetics. When β=0 and β=1, we can consider the impedance form as resistor and capacitor, 
respectively. 

b. Fractal rough surfaces 

A fractal surface is a kind of self affine surfaces and can be a good model to possibly explain 
the AC response of an interface between a metal and an electrolyte. A simple model of the fractal 
rough surfaces is the self-affine Cantor block, shown in Figure 6.15. 

Figure 6.15 A self-affine Cantor block model for the electrolyte surface at the metal-
electrolyte interface which has CPE impedance. 

In each integration, there are N2=4 branches of width smaller by 1/a and length smaller by 1/az, 
so the surface area of sides is reduced by 1/a2. Theodore Kaplan et al. (1987) showed that the 
Cantor block model also has a constant element form of impedance: 

11



Lecture 6: Impedance of electrodes 10.626 (2011) Bazant 

c. Distribution of relaxation times 

It is worth to noting that the constant-phase-angle impedance does not require rough or porous 
surfaces. It can also arise from anomalous kinetics or transport when there is a broad range of 
time scales (e.g. due to multistep reactions, or heterogeneous catalysis at many different surface 
sites), even at an atomically flat surface. In both cases, one can think of the surface or porous 
material as providing many different circuit pathways for charge storage in parallel, each with a 
different relaxation time τ = RC . We can model this as a continuous integral over a random 
distribution of relaxation times, 

Z = R 
∞ n(τ )dτ
∫ 1 + iωτ 0 
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