
Homogeneous Reaction Diffusion

This lecture will focus on the homogeneous reaction diffusion regime in which diffusional
transport is coupled with homogeneous reactions. Before this lecture, our focus has been
on trying to understand transport and reactions separately. In this lecture we will examine
them together. The 1-D governing equation for such a phenomenon is given by:

∂C

∂t
= D

∂2C
+ k(C0 )

x2
− C (1)

∂

The rightmost term in the above equation is the contribution of the homogeneous reac-
tion which was not considered before this lecture. Some examples where this equation is
applicable follow:

1. Electrocatalysis: This is one of the direct examples of the homogeneous reaction dif-
fusion regime. This involves multiple steps, i.e. diffusion, adsorption and a possible
charge transfer at the surface (x = 0). As shown in the schematic of Fig(1), species will
adsorb on the catalyst surface, then diffuse along the surface to the right/left surfaces
where a charge transfer reaction can occur. The center of such system has a symmetry
boundary condition. The edges are described by the reaction which relate the potential
and current to the concentration.
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Figure 1: Schematic of electrocatalysis mechanism involving reaction diffusion

2. Pseudocapacitor porous electrode: In the approximation of a linear RC transmission
line (introduced earlier in the class), this system follows the exact same formulation

1



above for a homogeneous reaction diffusion system. In a standard supercapacitor
porous electrode, we have already shown that the interfacial double layers on the metal-
lic surface stored charge electrostatically and provide an effective capacitance per unit
length (CP ) in the equivalent circuit. There is also pore resistance for ion transport
per unit length (RP ). In the case of a ”pseudocapacitor” there is also the possibility
of a Faradaic reaction at the surface (e.g. due to adsorbed redox molecules, or battery
nanoparticles), which provides additional ”pseudocapacitance” that increases CP via
electrochemical (as opposed to electrostatic) charge storage as well as a parallel inter-
facial resistance (per length per area) Ri for charge transfer reactions (e.g. from the
linearized Butler-Volmer equation). The equivalent circuit of such a system as shown
in Fig(2).

Figure 2: Schematic of pseudocapacitor electrode and its equivalent circuit

We also derived the following governing equation:

∂φ
CP

∂t
=

1

Rp

∂2φ

∂x2
− φ

(2)
Ri

If we compare Equation (2) with Equation (1), it is clear that they have the same form,
such that we can easily define equivalent concentration, diffusivity and reaction rate
constants.

3. Semiconductors: This is another example for which we get a similar governing equation
because holes and electrons combine with each other, coupling diffusion and reactions.
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The rest of the lecture will be divided into two parts: Linear sweep voltammetry and Im-
pendence problem.

1 Linear Sweep Voltammetry

As mentioned before, the governing equation for the current system is as follows:

∂C

∂t
= D

∂2C
+ k(C0

∂x2
− C)

wherein C0 is the initial concentration and C is the current concentration on ions. Because
the reaction is electrochemical, we can relate the change in potential (∆V ) to concentration
using the Nernst equation as follows:

kBT
∆V =

ne
ln

(
C

C0

)
=
kBT

ne
ln

(
C0 + ∆C

(3)
C0

)
Now, if we assume small changes in voltage and concentration, the log term can be linearized
and we obtain:

kBT
∆V =

ne

∆C
(4)

C0

For linear sweep voltammetry, we know that ∆V = st. The boundary condition for solving
the diffusion reaction equations are as follows:

kBT
st =

ne

∆C

C0

∣∣∣∣
x=0

(5)

∂C
= 0

x

∣∣∣∣ (6)
∂ x=L

The initial condition for the system will be as follows:

C|t=0 = C0 (7)

The trick to solve this equation is to transform the variable from C to its derivative u because
in that case we will be able to use Equation (5) as a simpler boundary condition. Hence,

∂C
differenting Equation (1) w.r.t. time and defining u = , we get:

∂t

∂u

∂t
= D

∂u
k

∂x2
− u (8)

The boundary conditions and initial will change for this equation as follows:

∂u nesC
=

∂t

∣∣∣∣ 0

x=0 kBT
(9)

∂u
=

∂x

∣∣∣∣ 0 (10)
x=L
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u|t=0 = 0 (11)

1
To solve the equation for earlier times, we can assume that t� , which means that system

k
hasn’t had enough time to “feel” the reactions. This can also
length scales, i.e. the diffusion length scale which scales as

√ be understood in terms of√ Dt is much smaller than the

steady state length scale of
D

k
. This has been shown in the Figure(3).

Figure 3: Schematic of concentration profiles for early time

This also implies that the boundary condition mentioned in the Equation (10) will change
to following:

∂u
=

∂x

∣
0 (12)

x=∞

Hence, now we can easily solve Equation (8)

∣∣∣
with Equation (9,10,12) to get the following

result:
nesC0

u =
kBT

erfc

(
x

2
√ (13)
Dt

)
Calculating the exact solution for C from Equation (13) by integrating w.r.t. x was omitted
from this lecture and covered in the solution of HW-5. However, we can still use scaling
analysis to get a good approximate solution and relate current and voltage. From Equation
(13) it is clear that we can safely assume:

nesC0t
∆C =

kBT
f

(
x

2
√ (14)
Dt

)
We know that:

∂C
I = −neAD

∂x

∣∣∣∣
x=0

(15)
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Hence, differentiating Equation (14) w.r.t. x and using Equation (15), we can arrive at:

(ne)2AC0s
I = Const.

kBT

√
Dt = Const.

(ne)2AC0s

kBT

√
D

∆V
(16)

s

To find the value of constant, we would have to go through the math, but we find that
scaling analysis gives a very good method to understand the relationship between current
and voltage for linear sweep voltammetry in reaction diffusion system. However, these results
only apply for early times. In order to solve for later times, we make a new approximation.
We assume most concentration gradients will be confined in a boundary layer region and the
concentration gradient at x = 0 can be calculated by a linear approximation as shown in
Fig(4). The boundary layer thickness is that set by the competition between diffusion and
bulk reactions which were neglected in the preceding analysis for early time.

Figure 4: Schematic of concentration profiles for late time

Hence, as earlier, using equation (15), we can calculate I as follows:

(ne)2ADC0st
I = Const.

kBT

√
k

D
= Const.

(ne)2ADC0∆V

kBT

√
k

(17)
D

We can now plot equation (16) and (17) together to get a response for I as a function of
∆V . The response has been shown in Fig(5).
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Figure 5: Response of I to linear sweep voltammerty i.e. ∆V = st

2 Impedance Problem

This problem is very similar to the solution we discussed in few lectures back for Warburg
impedance. This solution was founded by Greisher. To calculate the impedance, we will
substitute, ∆C(x, t) = Re(∆C∗eiωt) in Equation (1). Doing that we get the following result:

∂2C∗
iω∆C∗ = D∆ k

∂x2
− ∆C∗ (18)

which can be rearranged:
∂2C∗

(k + iω)∆C∗ = D∆ (19)
∂x2

We can see that Equation (19) is very similar to Warburg’s impedance equation except iω
has been replaced by k + iω. Therefore we can use the previous solution for a semi-finite
system:

Z(ne)2AC0

√
D 1

=
kBT

√
k + iω

(20)

We can make these equations dimensionless by defining k̃ =
kL2 ω

, ω
D

˜ L2

=
D

, Z̃ =
Z(ne)2ADC0

.
kBTL

In addition, we had previously arrived at the solution for a finite system. Using the nondi-
mensional parameters:

1. Semi-infinite system: Z̃
1

= √
k̃ + iω̃
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Table 1: Limiting cases of finite-length reaciton-diffusion (Gerisher) impedance

˜System Limits Z Discussion
1˜Finite k >> 1 √ Same as semi-infinite system at k̃ >> 1 because√
k̃ + iω̃ D

δ ∼ << L
k√

coth iω̃˜Finite k << 1, ω̃ >> k √ Converts to a finite-length Warburg element as re-√iω̃ D
action is so slow that δ ∼ >> L

k√˜coth k˜Finite k << 1, ω̃ << k √ Relatively flat concentration profile and hence con-
k stant resistance (real impedance)˜

coth
2. Finite system: Z̃ =

√
k̃ + iω̃√

The

k̃ + iω

above relations have been looked
Nyquist

˜
into more details in extreme cases in Table(1) and the

plot has been shown in Fig(6).

Figure 6: Nyquist plot for the frequency response
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