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Lecture 23 - Heterogeneous Charge Transfer 

5/9/2014 

The rate R of a general reaction in any particular direction is dictated by the difference in excess 
chemical potential1 between the transition state and starting state i: 
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Figure 1 Schematic showing excess chemical potential landscape for a general reaction with transition 
state 

where          is the frequency of hop attempts and  
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 effectively represents the 

probability of a successful hop. Applying this equation to the general reaction     , and  
multiplying each reaction rate by the concentration of reacting species available, the net rate 
going from A to B [1] is:  
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Now, let us consider the electrochemical reaction  

              

                                                           
1 Recall that excess chemical potential     is defined such that                          
    . We use excess electrochemical potential in the limit where the concentrations of reactants and 
products are equal  
2 Note that all concentrations henceforth are non-dimensionalized by a reference concentration cref 
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occurring at an electrode, where   and   are the participant oxidized and reduced species. Given 
our definition of     and assuming               , we may re-express eq 3 as  
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Note that this equation is applicable to any general chemical reaction for which a suitable model 
of excess chemical potential can be found. As we have seen in class, such a formulation 
describes the Langmuir model of surface adsorption as well as the Butler-Volmer model of 
Faradaic reactions at electrodes.3  

In Marcus theory-type [2], [3] models of Faradaic reactions,     has a harmonic oscillator-type 
dependence on the reaction coordinate x such that      

 

 
      

 , where    is the reaction 
coordinate4 at lowest excess chemical potential and k is the force constant associated with the 
normal modes of the solvation shell vibration around reactant molecules/ions.5 The application 
of the model implied by eq 4 in homogeneous chemical reactions has resulted in a successful 
prediction of reaction rates[4], and motivates an extension to heterogeneous electron transfer 
reactions. We may write the excess electrochemical potential of the reactants and products as:  

 

Figure 2 Schematic showing excess chemical potential landscape for an electrode reaction with transition 
state and driving force ∆Gex. 

 

                                                           
3 The Butler-Volmer model results from the assumption that the chemical potential of the transition state 
is split between the initial and final states, together with an extra ‘chemical energy’ at the transition state 
such that                          . 
4
 The reaction coordinate refers to the variation in the total configuration of bonds and distances between 

the reactant/product species and solvent environment, and not inter-nuclear distances. 
5 For solids, k is related to the vibrations between the reactant and surrounding ions in the lattice. 
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where  represents the activity coefficient of the species of interest,   is the solution potential 
and    is the electrode potential. 

Given that at the transition state,   
      

  , we can find     , which represents the free energy 
change for the reduction of O: 

     
  

 
       

    
  

 
       

        

Note, however, that this definition of free energy does not include any concentration effects, 
since we originally defined the general reaction such that reactions are dictated by the landscape 
of excess chemical potential. This assumption is valid for homogeneous reactions where 
concentrations do not vary significantly in bulk solution, however for interfacial electron transfer 
reactions, the concentrations of reactant and product phases may be vastly different. We thus 
introduce a correction based on our initial definition of overpotential η, where  

                   
  

    
      

Eq 8 is what results if the full definition of chemical potential is used in eqs 5 and 6, and the 
logarithm terms include the non-dimensional reactant and product concentrations as well as the 
activity coefficients. By solving for    in eq 7 and assuming      , we can find the barriers 
for reduction and oxidation independently: 
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where    
 

 
       

 , defined as the solvent reorganization energy. By substituting the 
definition of excess chemical potential at the transition state from eqs 9 and 10 into eq 2, we can 
find the net reaction rate for the reduction of O: 
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Based on the definition of overpotential used in eq 8, and that      , we can write a current-
overpotential relationship: 
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Figure 3 Figure showing current-voltage relationship for reorganization energies of 3, 6 and 9 kT. The 
overpotential is scaled to kT and the current I is scaled to the exchange current. The peak of each parabola 
occurs at the reorganization energy. 
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). Notice that at small 

overpotentials | |      and reorganization energies     , and provided       does not vary 
too much from   , eq 12 reduces to the symmetric Butler-Volmer equation, as shown in the 
figure above. 

Note that the reorganization energy is dictated by the force constant of normal modes between 
reactant ions/molecules and the surrounding solvent along the excess chemical potential 
landscape. In making the assumption that      , we have supposed that these modes are 
similar for both reactant and product. This is valid for so-called outer sphere reactions where 
electron transfer mainly induces a relaxation of solvent molecules around the reacting species, 
leaving inner bond environment relatively unperturbed, as is the case for one-electron redox 
reactions involving oxygen [5] and aqueous self-exchange reactions such as           

           [2] In inner sphere reactions, electron transfer is accompanied by a significant 
change in the inner bond configuration between reacting ions and the solvent – a process that 
may involve bond breaking/surface adsorption of reacting species - resulting in different force 
constants and      . 

For electron transfer in real experiments, the total reorganization energy is thus a sum of inner 
sphere, outer sphere and extra thermal contributions: 

                             

Since inner sphere electron transfer processes are characterized by a strong electron coupling 
between the initial and final states [6], there will be a separation between low energy “bonding” 
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higher energy “antibonding” states that can be estimated by considering the secular equation 
from quantum mechanics: 

|
        

        
|          

where          | |    is the energy of the initial state,         | |     is the 
energy of reduced state and     is the coupling matrix element between the two states. Solving 
the equation results in two states separated by    
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 . The implication of this result is that as the energy of overlap     

increases, the lower energy bonding state is favored during electron transfer. Note that if     and 
        are both zero, we recover the outer sphere condition where non-adiabatic electron 
tunneling occurs without coupling between initial and final states. 

 

Figure 4 Schematic diagrams showing the difference between outer and inner sphere electron transfer 
reactions and corresponding excess chemical potential energy curves. 

For outer sphere electron transfer, since there is no significant rearrangement of bonds, the 
reorganization energy consists mainly in the energy required to polarize solvent molecules 
around reacting species and is well approximated by the continuum generalized Born model of 
solvation such that: 
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where    is the static dielectric constant;     is the optical dielectric constant;  , the effective 
Born radius, is the distance between the ion/molecule and the solvation shell; and   is the 
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distance over which electron transfer occurs. As expected, a small difference between     and    
– representing minimal change in solvent polarizability induced by electron transfer – results in a 
small reorganization energy. Note also that            . This imposes an energetic  

barrier that scales as   
  

 
 for concerted multi-electron transfer (see eqs 9 and 10). Thus a small 

number of electrons (ideally, 1) is likely to be transferred at any one time. This explains the step-
by-step nature of most multi-electron transfer reactions at electrodes, such as those involved in 4-
electron water splitting, oxygen reduction and other complex reactions of interest today.[7] 
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