10.426/10.626 Electrochemical Energy Systems

Spring 2014 MIT, M. Z. Bazant
Problem Set 2 - Equivalent Circuits and Equilibrium Thermodynamics

Fig. 1a

Fig. 1b

1. Pseudocapacitor impedance.

(a) Derive the impedance $Z_{i}(\omega)$ of an electrode/electrolyte interface ($\Omega \times$ area), where the double-layer capacitance C_{D} is in parallel with the Faradaic reaction circuit, given by the charge-transfer resistance R_{F} in series with pseudocapacitance C_{F} (Fig. 1a).
(b) Assume that pseudocapacitance dominates, $C_{F} \gg C_{D}$, and derive simple approximations of the impedance $Z_{i}(\omega)$ for low and high frequency, in which one of the three circuit elements can be neglected. Use these results to draw a Nyquist plot of $-\operatorname{Im} Z_{i}$ vs. $\operatorname{Re} Z_{i}$, and label approximate points where $\omega=\left(R_{F} C_{D}\right)^{-1}$ and $\omega=\left(R_{F} C_{F}\right)^{-1}$.
(c) Now consider a porous pseudocapacitor electrode with constant electron potential, whose impedance can be modeled as an RC transmission line (Fig. 1b) with interfacial impedance Z_{i}, pore area per volume a_{p}, electrode area A, and macroscopic pore conductivity σ_{p}. Each repeated unit of the transmission line represents a cross-sectional slice of width $d x$ with total pore resistance $R_{p}=d x /\left(A \sigma_{p}\right)$ and total interfacial impedance $Z_{i} /\left(A a_{p} d x\right)$. Derive the total electrode impedance $Z(\omega)$ for sufficiently high frequency that the transmission line is effectively infinite (recursive circuit, $d x \rightarrow 0$), and sketch the Nyquist plot, assuming again $C_{F} \gg C_{D}$.
2. Redox reactions in a multicomponent regular solution. Consider a homogeneous mixture of N different species M_{i} with numbers $n_{1}, n_{2}, \ldots n_{N}$ on a lattice of N_{s} sites. The empty sites of number $n_{0}=N_{s}-\sum_{i=1}^{N} n_{i}$ represent liquid solvent molecules or crystal vacancies.
(a) Derive the entropy density per site, $s\left(x_{1}, x_{2}, \ldots, x_{N}\right)=S\left(n_{1}, n_{2}, \ldots, n_{N}\right) / N_{s}$, in the thermodynamic limit $n_{i}, N_{s} \rightarrow \infty$ at fixed volume fractions $x_{i}=n_{i} / N_{s}$.
(b) Consider the enthalpy density for a regular solution,

$$
h=\sum_{i=1}^{N} x_{i}\left(A_{i}+\sum_{j=1}^{N} B_{i j} x_{j}\right)
$$

where $B_{i i}=0$ and $B_{i j}=B_{j i}$, and assign each particle of species i a charge $z_{i} e$. Derive the electrochemical potential difference $\mu_{i}\left(x_{1}, \ldots, x_{N}\right)=\partial g / \partial x_{i}$ for adding species i.
(c) Derive the Nernst voltage $\Delta \phi$ of the general half-cell redox reaction, $\sum_{i=1}^{N} s_{i} M_{i}^{z_{i}} \rightarrow n e^{-}$.
3. Fruit batteries. Prof. Bazant has agreed to demonstrate a "fruit battery" at his daughter's science fair, but he needs your help to explain it to the kids. The anode is a galvanized nail (zinc), and the cathode is a shiny penny (copper), which are stuck into a grapefruit ($\mathrm{pH}=3$) or lemon ($\mathrm{pH}=2$), whose acidic juices serve as the electrolyte. The fruit is rolled to breakup the tissue and produce well connected juice pathways between the electrodes. The anode reaction is zinc electro-dissolution

$$
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 e^{-} \quad \Delta \phi^{\Theta}=-0.76 \mathrm{~V}
$$

Some websites and textbooks say the cathode reaction is copper electrodeposition

$$
\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \quad \Delta \phi^{\Theta}=0.34 V
$$

and others, hydrogen evolution

$$
2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2} \quad \Delta \phi^{\Theta}=0 V
$$

The observed open circuit voltage (OCV) is typically in the range $0.8-1.0 \mathrm{~V}$.
(a) Which cathode reaction is more likely to occur, and why?
(b) Derive the theoretical OCV vs. pH (of the fruit juice), $p_{H_{2}}$ (hydrogen partial pressure in atm), and $c_{Z n^{2+}}$ (zinc ion concentration in M , assuming a dilute solution). What quasi-steady conditions are consistent with the observed voltage $V_{0}=0.9 \mathrm{~V}$?
(c) Which fruit (grapefruit or lemon) can produce more power? Consider both OCV and internal resistance.
(d) What will happen to the voltage if the lemon battery is soaked in a beaker of 0.1 M copper sulfate solution $\left(\mathrm{CuSO}_{4}\right)$?

MIT OpenCourseWare
http://ocw.mit.edu

10.626 Electrochemical Energy Systems

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

