R. G. Prinn

12.806/10.571:

Atmospheric

Physics \&

Chemistry,

farch 7, 2006

Figure by MIT OCW.

COMPONENTS OF ATMOSPHERIC CHEMISTRY MODELS

To solve the model equations, we divide the atmospheré into a finite number of boxes (grid cells).
 10014

Write a budget for each each box, defining the changes within the box, and the flows between the boxes.

Figure by MIT OCW.

Physical picture:
(Eulerian)

Figure by MIT OCW.

Notation:
$\underline{\text { Inputs }}=I_{x}^{i} \mathrm{dydz}+\mathrm{I}_{\mathrm{y}}^{\mathrm{i}} \mathrm{dzdx}+\mathrm{I}_{\mathrm{z}}^{\mathrm{i}} \mathrm{dxdy}$
Outputs $=O_{x}^{i} d y d z+O_{y}^{i} d z d x+O_{z}^{i} d x d y$

$$
=\left[I_{x}^{i}+\frac{\partial I_{x}^{i}}{\partial x} d x\right] d y d z+\left[I_{y}^{i}+\frac{\partial I_{y}^{i}}{\partial y} d y\right] d z d x+\left[I_{z}^{i}+\frac{\partial I_{z}^{i}}{\partial z} d z\right] d x d y
$$

$I_{x}^{i}=[i] u, \quad I_{y}^{i}=[i] v, \quad I_{z}^{i}=[i] w \quad$ (input fluxes)
$\mathrm{u}=\frac{\mathrm{dx}}{\mathrm{dt}}, \mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dt}}, \mathrm{w}=\frac{\mathrm{dz}}{\mathrm{dt}} \quad$ (wind velocities)
$P_{i}, L_{i}=\underline{\text { rates of chemical production, loss }}$
$[\mathrm{i}]=\underline{\text { concentration of } \mathrm{i}}$
Local rate of change of [i] given by:
$\frac{\partial[\mathrm{i}]}{\partial \mathrm{t}}=\frac{\text { Inputs }- \text { Outputs }+ \text { Internal net production }}{\mathrm{dxdydz}}$
$=P_{i}-L_{i}-\frac{\partial}{\partial x}([i] u)-\frac{\partial}{\partial y}([i] v)-\frac{\partial}{\partial z}([i] w)$
$=\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}-\nabla \cdot([\mathrm{i}] \overrightarrow{\mathrm{V}})$
Continuity equation for i
For total molecular concentration $[\mathrm{M}], \mathrm{P}_{\mathrm{M}}-\mathrm{L}_{\mathrm{M}} \simeq 0$ so:
$\frac{\partial[\mathrm{M}]}{\partial \mathrm{t}}=-\nabla \cdot([\mathrm{M}] \overrightarrow{\mathrm{V}})$

Continuity equation for M

Defining mixing ratio $=[\mathrm{i}] /[\mathrm{M}]=\mathrm{X}_{\mathrm{i}}$:
$\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{t}}=\frac{\partial}{\partial \mathrm{t}}([\mathrm{i}] /[\mathrm{M}])=\frac{\frac{\partial[\mathrm{i}]}{\partial \mathrm{t}}[\mathrm{M}]-\frac{\partial[\mathrm{M}]}{\partial \mathrm{t}}[\mathrm{i}]}{[\mathrm{M}]^{2}}$
$=\frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}-\nabla \cdot\left(\mathrm{X}_{\mathrm{i}}[\mathrm{M}] \overrightarrow{\mathrm{V}}\right)\right)[\mathrm{M}]+\nabla \cdot([\mathrm{M}] \overrightarrow{\mathrm{V}}) \mathrm{X}_{\mathrm{i}}[\mathrm{M}]}{[\mathrm{M}]^{2}} \quad$ (Using equations (1) and (2))
$==\frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}} \nabla \cdot([\mathrm{M}] \overrightarrow{\mathrm{V}})-[\mathrm{M}] \overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}}\right)[\mathrm{M}]+\nabla \cdot([\mathrm{M}] \overrightarrow{\mathrm{V}}) \mathrm{X}_{\mathrm{i}}[\mathrm{M}]}{[\mathrm{M}]^{2}}$
$=\frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}-[\mathrm{M}] \overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}}\right)[\mathrm{M}]}{[\mathrm{M}]^{2}}$
$=\frac{\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}}{[\mathrm{M}]}-\overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}}$
Continuity Equation for i (mixing ratio form)
Theorem: If there is no gradient in the mixing ratio of $\mathrm{i}\left(\nabla \mathrm{X}_{\mathrm{i}}=0\right)$ then there can be no local changes in i due to transport.

Rate of change of X_{i} traveling with the air given by (Lagrangian view) :
(a)

$$
\frac{\mathrm{d} \mathrm{X}_{\mathrm{i}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{X}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})\right]
$$

$$
=\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dt}}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{z}} \frac{\mathrm{dz}}{\mathrm{dt}}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{t}} \quad \text { (chain rule) }
$$

$$
=\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{x}} \mathrm{u}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{y}} \mathrm{v}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{z}} \mathrm{w}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{t}}
$$

$=\overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}}+\frac{\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}}{[\mathrm{M}]}-\overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}} \quad$ (using equation (3))
$=\frac{\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}}{[\mathrm{M}]}$

Theorem: If there is no "net chemical production" ($\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}=0$), then the mixing ratio of i is conserved moving with the air.
(b)

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{it}}{ }^{*}=\mathrm{X}_{\mathrm{i} 0}+\int_{0}^{\mathrm{s}^{*}} \frac{\mathrm{~d} \mathrm{X}_{\mathrm{i}}}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{ds}} \mathrm{ds} \\
& =\mathrm{X}_{\mathrm{i} 0}+\int_{0}^{\mathrm{s}^{*}} \frac{\mathrm{P}_{\mathrm{is}}-\mathrm{L}_{\mathrm{is}}}{[\mathrm{M}] \mathrm{u}_{\mathrm{s}}} \mathrm{ds}
\end{aligned}
$$

Theorem: The change in mixing ratio in an air mass from its initial value is a line integral of the "net chemical production" over the trajectory of the air mass.

A steady state exists when the local rate of change is zero:
$\left.\begin{array}{ll}\frac{\partial[\mathrm{i}]}{\partial \mathrm{t}}=0 & \text { i.e. } \mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}=\nabla \cdot([\mathrm{i}] \overrightarrow{\mathrm{V}}) \\ \frac{\partial[\mathrm{M}]}{\partial \mathrm{t}}=0 & \text { i.e. } \nabla \cdot([\mathrm{M}] \overrightarrow{\mathrm{V}})=0\end{array}\right\}$
(6)
$\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{t}}=0$
i.e. $\frac{P_{i}-L_{i}}{[M]}=\vec{V} \cdot \nabla X_{i}$

One-Dimensional (Horizontal) Model

Equation (7) with $v=w=0$ gives:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}=0-[\mathrm{M}] \frac{\mathrm{X}_{\mathrm{i}}}{\tau_{\mathrm{i}}} \\
& =[\mathrm{M}] \mathrm{u} \frac{\mathrm{dX}}{\mathrm{dx}}
\end{aligned}
$$

i.e. $\frac{d \ln X_{i}}{d x}=-\frac{1}{u \tau_{i}}$
i.e. $X_{i}(x)=X_{i}(0) \exp \left(-\frac{x}{u \tau_{i}}\right)$
[chemical (e-folding) distance, $\mathrm{h}=\mathrm{u} \tau_{\mathrm{i}}$]
[advection time $=x / u$]
i.e.

Figure by MIT OCW.

