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Interactions Between Air Pollution and Climate
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COMPONENTS OF ATMOSPHERIC CHEMISTRY MODELS
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Combining Chemistry and Transport: The Continuity Equation 
 

Physical picture:   
(Eulerian) 
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iP ,   = iL rates of chemical production, loss

[ ]i  = concentration of i
 
Local rate of change of [i] given by: 
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Continuity equation for i 
 
For total molecular concentration [ ]M , M MP L 0−  so: 
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     Continuity equation for M 
 
Defining mixing ratio [ ] [ ] ii M X= = : 
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Continuity Equation for i (mixing ratio form) 
 
Theorem: If there is no gradient in the mixing ratio of i ( )iX 0∇ =  then there can be no 
local changes in i due to transport. 
 

( )iRate of change of X  traveling with the air given by Lagrangian view :  
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Theorem: If there is no “net chemical production” ( i iP L 0− = ), then the mixing ratio of i 
is conserved moving with the air. 
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Theorem: The change in mixing ratio in an air mass from its initial value is a line integral 
of the “net chemical production” over the trajectory of the air mass. 
 
A steady state exists when the local rate of change is zero: 
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One-Dimensional (Horizontal) Model 
 
 
                                  Source Region   Downwind Region  

                                  [Constant Xi]     [Constant wind speed u , Pi = 0, i
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[chemical (e-folding) distance, ih u= τ ] 
[advection time = x u ] 
 
i.e.  
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