
 
We now use the criterion of optimality to determineΚ k . Since we will assume we 

know  and , we will choose a value for op(y ) tp(x ) Κk which minimizes the cost 
function J  (equation 12) for the minimum variance Bayes estimate. Specifically 
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Evaluating ∂ ∂  and solving for the so-called “Kalman Gain” matrix  we 
have 

Κ =k kJ / 0 Κk
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Substituting (20) into (18) then yields 
 

Ρ = Ι − Κ Η Ρa
k k k[        (21) 

 
Finally, using the state space equation (7)   
 

= + ηo o ox(t) M(t, t )x(t ) (t, t )   
 
we then obtain the estimates of needed in (15) and f

kx Ρf
k needed in (21) 
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where , and − −= Ε η ηT

k 1 k 1 k 1Q [ −
a
k 1x  and −Ρa

k 1 are the optimal outputs from the previous 

iteration of the filter. From our earlier discussion (Section 3),Q  could represent 
random forcing in the system model due to transport model errors. 
 To use the filter we must provide initial (a priori) estimates for x and P. Then 
from any prior output estimates , we use measurement k information 

( ) and model information ( ) together with equations (22), (23), (20), 

(15), and (21) to provide outputs and 

− −Ρa a
k 1 k 1(x , )

o
k ky ,R k kH ,Q

a
kx Ρa

k  for inputs to the next step. The filter 
equations are summarized in Table 1. 
 Some intuitive concepts regarding the DKF are useful in understanding its 
operation. First, from equation (20), the gain matrix −Κ → Η 1

k k

, k

f
k

(its “maximum” value) 

as the measurement error covariance (noise) matrix and  (its 

“minimum” value) as . Since the update in the state vector varies 
linearly with , it is clear that measurements noisy enough so that much 

exceeds , will contribute much less to improvement of the state vector 
estimation. 

kR 0→ −Κ → Ρ Ηf T 1
k k kR

→ ∞kR −a
kx x

Κ k kR

Η Ρ Ηf T
k k k

 In this respect we can usefully consider Η Ρ Ηf T
k k k as the error covariance matrix 

for the measurement estimates . This emphasizes the importance of the weighting ky



of the data inherent in and the distortions created if erroneous are used. Note 
that can include model error, mismatch error, and instrumental error as noted 
earlier. 

kR kR

kR

 Second, using (21), and recognizing that the maximum value of , we 

see  with equality occurring for infinitely noisy measurements. Hence, the 
error covariance matrix (whose diagonal elements are the variances of the state 
vector element estimates) decreases by amounts sensitively dependent on the 
measurement errors. 

Κ =k kH Ι
f
kΡ ≤ Ρa

k

Ρk

 Third, we note from (23), that random forcingsη in the system (state-space) 
model [equation (7)], which are represented here by Q, will increase the 
extrapolated error covariance matrix Ρf

k by amounts depending on the relative values 

of and the extrapolation matrix −k 1Q − − −Μ Ρ Μa T
k 1 k 1 k 1 in the absence of system (state-

space) model noise. The inclusion of Q lessens the influence (or memory) of previous 
iterations in the filter operation. In the extreme, sufficiently large values of Q will 
prevent the capability of even non-noisy measurements to decrease and hence 
increase the confidence in the state vector estimate. In other words excellent (non-
noisy) measurements are of little use if the system (state-space) model is very noisy 
(e.g., through random variations 

Ρk

η  introduced by random transport errors). 



 
 
Table 1: Kalman Filter Equations*

 
Definition      Equation 
 
Measurement equation (model)   = + ε =o t

k k k k k ky H x ; y H x  f
k

 
System (state) equation (model)   − − −= + ηk k 1 k 1 kx M x 1

(y y )

 
 
State update      x x  − = Κ −a f o

k k k k k

 
Error Update      Ρ = − Κ Η Ρa

k k k(1 ) f
k

Ρ Η Η Ρ Η +f T f T 1
k k k k k k k( R )

   
  
Kalman gain update     Κ =  −

 
State time extrapolation    − −= Μf a

k k 1 kx x 1  
 
Error time extrapolation    − − − −Ρ = Μ Ρ Μ +f a T

k k 1 k 1 k 1 kQ 1  
 
System random forcing covariance   = Ε η ηT

k kQ ( k )  
 
Measurement error covariance   = Ε ε ε T

k k kR ( )  
 
Estimation error covariance    Ρ = Ε ν ν T

k k k( )  
 
Input measurement matrix    =Η = ∂ ∂k ky / xk  
 
Input system random forcing covariance  =Q    k

 
Input state extrapolation    =Μk  
 
Input measurement      o

ky
 
Input measurement error covariance  =R  k

 
Filter iteration      − − −  → − →f(k 1) , estimate

       → −  →a(k 1) , extrapolate

       →  → − − −f(k) ,
___________________________________________________________________ 

*A superscript a or superscript f denotes respectively the value before (f) or after 
(a) an update of an estimate using measurements, and k denotes the 
measurement number. In general, errors are assumed random with zero mean 
and measurement and estimation errors are uncorrelated. 
 

  



Kalman Filter

Notes on slide notation:
(+) = a,  (-) = f,  z = y,  (^) = model
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