Take horizontal average of equation (5) and denote horizontal average with overbar and deviation from horizontal average with a prime:

$$
\begin{aligned}
& \overline{\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}}=\overline{\nabla \cdot([\mathrm{i}] \overrightarrow{\mathrm{V}})}=\frac{\mathrm{d}}{\mathrm{dz}}([\mathrm{i}] \mathrm{w})=\frac{\mathrm{d}}{\mathrm{dz}}\left(\mathrm{X}_{\mathrm{i}}[\mathrm{M}] \mathrm{w}\right) \\
& =\frac{\mathrm{d}}{\mathrm{dz}}\left(\overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime}[\mathrm{M}] \mathrm{w}}+\overline{\mathrm{X}_{\mathrm{i}}} \overline{[\mathrm{M}] \mathrm{w}}\right) \\
& =\frac{d}{d z}\left(\overline{\left.X_{i}^{\prime}[\mathrm{M}]\right]^{\prime} \mathrm{w}^{\prime}}+\overline{[\mathrm{M}]} \overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{w}^{\prime}}+\overline{\mathrm{w}} \overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime}[\mathrm{M}]^{\prime}}+\overline{\left.\mathrm{X}_{\mathrm{i}}{ }^{\prime} \overline{\mathrm{M}]} \overline{\mathrm{w}}\right) \text { (net vertical flux of air }}\right. \\
& \overline{[\mathrm{M}] \mathrm{w}}=0) \\
& =\frac{d}{d z}\left(\overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime}[\mathrm{M}]^{\prime} \mathrm{w}^{\prime}+}+\overline{[\mathrm{M}]} \overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{w}^{\prime}}\right) \quad\left(\overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime}}=0 \text { and } \overline{\mathrm{w}}=0\right) \\
& \simeq \frac{\mathrm{d}}{\mathrm{dz}}\left(\overline{[\mathrm{M}]} \overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{w}^{\prime}}\right) \\
& \left([\mathrm{M}]^{\prime} \ll \overline{[\mathrm{M}]}\right) \\
& \simeq-\frac{d}{d z}\left(\overline{[M]} \frac{\overline{d X_{i}}}{d z}|\delta z|\left|w^{\prime}\right|\right) \\
& \text { (eddy diffusion approximation*) } \\
& =-\frac{\mathrm{d}}{\mathrm{dz}}\left(\overline{[\mathrm{M}] \frac{\overline{\mathrm{dX}}}{\mathrm{dz}}} \mathrm{~K}_{\mathrm{z}}\right) \\
& \text { (9) }\left(\mathrm{K}_{\mathrm{z}}=\text { eddy diffusion coefficient }=\left|\delta_{z}\right|\left|\mathrm{w}^{\prime}\right|\right)
\end{aligned}
$$

*eddy diffusion approximation:


Figure by MIT OCW.

Consider case when loss only:
$\overline{\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}}=-\overline{\mathrm{L}_{\mathrm{i}}}=-\frac{\overline{\mathrm{i}]}}{\tau}$
( $\tau=$ chemical lifetime of i )
$=-\frac{\left(\overline{[\mathrm{M}]^{\prime} \mathrm{X}_{\mathrm{i}}{ }^{\prime}}+\overline{[\mathrm{M}]} \overline{\mathrm{X}_{\mathrm{i}}}\right)}{\tau}$
$\left(\overline{\mathrm{X}_{\mathrm{i}}{ }^{\prime}}=0\right.$ and $\left.\overline{[\mathrm{M}]}{ }^{\prime}=0\right)$

$$
\simeq-\frac{\overline{[\mathrm{M}]} \overline{\mathrm{X}_{\mathrm{i}}}}{\tau} \quad\left(\overline{[\mathrm{M}] '^{\prime} \mathrm{X}_{\mathrm{i}}} \ll \overline{[\mathrm{M}]} \overline{\mathrm{X}_{\mathrm{i}}}\right)
$$

For brevity drop subscripts i and overbars and assume $\mathrm{K}_{\mathrm{z}}=\mathrm{K}$ is independent of altitude and temperature is constant:

$$
\begin{aligned}
& \frac{\mathrm{X}[\mathrm{M}]}{\tau}=\mathrm{K} \frac{\mathrm{~d}}{\mathrm{dz}}\left([\mathrm{M}] \frac{\mathrm{dX}}{\mathrm{dz}}\right) \\
& =\mathrm{K}\left(\frac{\mathrm{~d}[\mathrm{M}]}{\mathrm{dz}} \frac{\mathrm{dX}}{\mathrm{dz}}+[\mathrm{M}] \frac{\mathrm{d}^{2} \mathrm{X}}{\mathrm{dz}^{2}}\right)
\end{aligned}
$$

$$
=\mathrm{K}\left(-\frac{[\mathrm{M}]}{\mathrm{H}} \frac{\mathrm{dX}}{\mathrm{dz}}+[\mathrm{M}] \frac{\mathrm{d}^{2} \mathrm{X}}{\mathrm{dz}^{2}}\right) \quad \text { (In hydrostatic equilibrium: } \frac{\mathrm{d}[\mathrm{M}]}{\mathrm{dz}}=-\frac{[\mathrm{M}]}{\mathrm{H}} \text { for }
$$ constant temperature)

Rearranging:
$\frac{\mathrm{d}^{2} \mathrm{X}}{\mathrm{dz}^{2}}-\frac{1}{\mathrm{H}} \frac{\mathrm{dX}}{\mathrm{dz}}-\frac{\mathrm{X}}{\mathrm{K} \tau}=0$
General solution is:
$\mathrm{X}=\mathrm{A} \exp \left(\frac{\mathrm{z}}{\mathrm{h}_{+}}\right)+\mathrm{B} \exp \left(\frac{\mathrm{z}}{\mathrm{h}_{-}}\right)$
$\frac{1}{\mathrm{~h}_{ \pm}}=\frac{1}{2 \mathrm{H}} \pm\left(\frac{1}{4 \mathrm{H}^{2}}+\frac{1}{\mathrm{~K} \tau}\right)^{\frac{1}{2}} \quad \quad$ (Note that $\mathrm{h}_{+}>0$ and $\mathrm{h}_{-}<0$ )
Determine A and B from boundary conditions. Say $X \rightarrow 0$ as $z \rightarrow \infty$, then $A=0$ and $X=X(0)$ at $z=0$ is given so $B=X(0)$. Thus specific solution is:
$\mathrm{X}=\mathrm{X}(0) \exp \left[\mathrm{z}\left(\frac{1}{2 \mathrm{H}}-\left(\frac{1}{4 \mathrm{H}^{2}}+\frac{1}{\mathrm{~K} \tau}\right)^{\frac{1}{2}}\right)\right]$
Consider two cases:
(a) $\frac{4 \mathrm{H}^{2}}{\mathrm{~K}} \gg \tau$ denoted REACTIVE SPECIES case,
i.e. (vertical transport time) $\gg$ (chemical lifetime)

Then $\mathrm{X} \simeq \mathrm{X}(0) \exp \left(-\frac{\mathrm{z}}{\sqrt{\mathrm{K} \tau}}\right) \quad \underline{\text { \{rapid decreases in mixing ratio with } \mathrm{z} \text { \} }}$
(b) $\frac{4 \mathrm{H}^{2}}{\mathrm{~K}} \ll \tau$ denoted INERT SPECIES case

Then $\mathrm{X} \simeq \mathrm{X}(0) \exp \left(-\mathrm{z}\left(\frac{1}{2 \mathrm{H}}-\frac{1}{2 \mathrm{H}}\right)\right) \quad \underline{\text { \{mixing ratio constant with } \mathrm{z} \text { \} }}$
$=\mathrm{X}(0)$
(i.e. $h_{-} \gg H$ )


Example: surface source and stratospheric sink (such as $\mathrm{N}_{2} \mathrm{O}, \mathrm{CFCl}_{3}, \mathrm{CF}_{2} \mathrm{Cl}_{2}$, etc.)

## Coupled Chemistry-Transport 3D Models

## 1. Basic Equations

Want to solve the 3D Eulerian continuity equation as an initial value problem:
$\frac{\partial[\mathrm{i}]}{\partial \mathrm{t}}=\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{1}-\nabla \cdot(\overrightarrow{\mathrm{V}}[\mathrm{i}]) \quad$ ("concentration" form)
$\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{t}}=\frac{\mathrm{P}_{\mathrm{i}}-\mathrm{L}_{\mathrm{i}}}{[\mathrm{M}]}-\overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}} \quad$ ("mixing ratio" or "mole fraction" form)
subject to upper and lower boundary conditions. But do not know $\overrightarrow{\mathrm{V}}$ as continuous function of space and time. Thus express the flux as the sum of "mean advective" and "eddy diffusive" parts:
$\langle\vec{V}[i]\rangle=\langle\vec{V}\rangle\langle[i]\rangle+\left\langle\vec{V}{ }^{\prime}[i]^{\prime}\right\rangle$
$\simeq\langle\overrightarrow{\mathrm{V}}\rangle\langle[\mathrm{i}]\rangle-\mathbf{K} \nabla\langle[\mathrm{i}]\rangle$
where $\rangle$ denotes time and/or space average, ( )' denotes deviation from $\rangle$, and $\mathbf{K}$ is a $3 x 3$ matrix containing "eddy diffusion" (or "turbulent exchange") coefficients. The average winds $\langle\overrightarrow{\mathrm{V}}\rangle$ can be obtained in principle from general circulation models (gcm's), observations, or gcm's "corrected" through assimilation of observations ("forecast" or "analyzed observed" winds). In this case $\langle\vec{V}\rangle$ are Eulerian averages appropriate to the grid spacing and time step in the g.c.m. and $\mathbf{K}$ refers to unresolved "sub-grid-scale"
winds. K may be determined by empirical (e.g. fitting observed [i] ), semi-empirical, or theoretical approaches. The latter two approaches involve so-called "parameterizations."

## 2. Prognostic and diagnostic continuity equations

It is not usually necessary to consider transport of all chemical species. Consider the prognostic (time dependent) continuity equation in mixing ratio form:
$\frac{\mathrm{P}_{\mathrm{i}}}{[\mathrm{M}]}=\frac{\mathrm{L}_{\mathrm{i}}}{[\mathrm{M}]}+\overrightarrow{\mathrm{V}} \cdot \nabla \mathrm{X}_{\mathrm{i}}+\frac{\partial \mathrm{X}_{\mathrm{i}}}{\partial \mathrm{t}}$
$=\left(\frac{1}{\tau_{\mathrm{i}}}+\overrightarrow{\mathrm{V}} \cdot \nabla+\frac{\partial}{\partial \mathrm{t}}\right) \mathrm{X}_{\mathrm{i}} \quad$ (using $[\mathrm{M}]=\frac{[\mathrm{i}]}{\mathrm{X}_{\mathrm{i}}}$ and $\tau_{\mathrm{i}}=\frac{[\mathrm{i}]}{\mathrm{L}_{\mathrm{i}}}$ )
$\simeq\left(\frac{1}{\tau_{\mathrm{i}}}+\frac{\mathrm{u}}{\Delta \mathrm{x}}+\frac{\mathrm{v}}{\Delta \mathrm{y}}+\frac{\mathrm{w}}{\Delta \mathrm{z}}+\frac{1}{\Delta \mathrm{t}}\right) \mathrm{X}_{\mathrm{i}} \quad$ (assuming $\Delta \mathrm{u} \simeq \mathrm{u}, \Delta \mathrm{v} \simeq \mathrm{v}, \Delta \mathrm{w} \simeq \mathrm{w}$ )
$\simeq \frac{\mathrm{X}_{\mathrm{i}}}{\tau_{\mathrm{i}}} \underline{\text { if }} \frac{\mathrm{u}}{\Delta \mathrm{x}}, \frac{\mathrm{v}}{\Delta \mathrm{y}}, \frac{\mathrm{w}}{\Delta \mathrm{z}}, \frac{1}{\Delta \mathrm{t}} \ll \frac{1}{\tau_{\mathrm{i}}}$
$=\frac{\mathrm{L}_{\mathrm{i}}}{[\mathrm{M}]} \quad$ [chemical steady state; diagnostic equation]
where $\tau_{\mathrm{i}}=$ chemical time scale $=\frac{[\mathrm{i}]}{\mathrm{L}_{\mathrm{i}}}$
$\frac{\Delta \mathrm{x}}{\mathrm{u}}, \frac{\Delta \mathrm{y}}{\mathrm{v}}, \frac{\Delta \mathrm{z}}{\mathrm{w}}=$ transport (advection) time scales
$\Delta t=$ integration time scale
The diagnostic equation is much faster to solve.

## Chemical families:

$\tau_{\mathrm{i}} \ll$ transport time (for loss by conversion of one family member to another)
$\tau_{\mathrm{i}} \geq$ transport time (for loss of overall family)
$\left[\mathrm{O}_{\mathrm{x}}\right]=[\mathrm{O}]+\left[\mathrm{O}_{3}\right]=$ odd oxygen
$\left[\mathrm{HO}_{\mathrm{x}}\right]=[\mathrm{H}]+[\mathrm{OH}]+\left[\mathrm{HO}_{2}\right]=$ odd hydrogen
$\left[\mathrm{NO}_{\mathrm{x}}\right]=[\mathrm{NO}]+\left[\mathrm{NO}_{2}\right]=$ odd nitrogen
$\left[\mathrm{Cl}_{x}\right]=[\mathrm{Cl}]+[\mathrm{ClO}]=$ odd (reactive) chlorine
Without chemical families and diagnostic equations, atmospheric chemical models are invariably "stiff" systems. Specifically if $\vec{X}$ is a vector of chemical mixing ratios $X_{i}$ and $\frac{\partial \vec{X}}{\partial t}=\vec{R}(\vec{X}, t)$ then the ratio of the largest and smallest eigenvalues $\lambda_{i}$ of the Jacobian
matrix $\frac{\partial \overrightarrow{\mathrm{R}}}{\partial \overrightarrow{\mathrm{X}}}$ is typically $\gg 1$ (equivalently the ratios of the largest to smallest "lifetimes" $\left.\lambda_{i}{ }^{-1} \gg 1\right)$
3. Spatial representations
a. Finite difference schemes (truncated Taylor expansion at J grid-points)
b. Spectral techniques (express variables using truncated series of N orthogonal harmonic functions and solve for N coefficients of expansion;) see
c. Interpolation schemes (interpolates between grid points e.g. using a polynomial)
d. Finite element schemes (minimizes error between actual and approximate solutions using a "basis function", good for irregular geometries, c.f. (b) above which is good for regular geometries)
4. Explicit and Implicit time stepping

Explicit: $\quad()_{x}^{t+\Delta t}=\mathrm{f}\left[\ldots,()_{x^{*}}^{t}, \ldots\right]$
Implicit: $\quad()_{x}^{t+\Delta t}=f\left[\ldots,()_{x^{*}}^{t},()_{x^{*}}^{t+\Delta t}, \ldots.\right]$
(Implicit methods more stable (but often less accurate) than explicit methods for longer time steps)

