10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 15: Processing Approaches: Suspension (bead) Polymerization Processes, Polyvinyl Chloride via Precipitation Polymerization, Polyethylene via Radical Polymerization



# Rate of conversion, emulsion polymerization

$$\overline{\rho_n} = k_p [M] \Delta t = k_p [M] \frac{n}{\rho}$$
In general,
$$R_p = \frac{n}{2}$$
handout

 $-\frac{dm}{dt} = \frac{1}{2} k_p [M]$ 

 $R_p = \frac{n}{2} \, k_p \big[ M \big]$ 

 $\rho$  (radicals)

$$\overline{\rho_n} = k_p [M] \Delta t = k_p [M] \frac{n}{\rho}$$

Emulsion Polymerization: monomer  $\rightarrow$  porous particles

introduce plasticizer more readily processible, aerodyn. in powder form

Common emulsion polymers:

styrene + copolymers vinyl chlorides ex. Pleather butadiene vinylidene chloride vinyl acetate vinyl acrylates (acrylics) methyl acrylates

Advantages:

- low η (viscosity)
- great T control

- final product  $\rightarrow$  fine powder

or water form  $\Rightarrow$  coatings

Disadvantages:

- a lot of soap as impurity ex. In medical applications, can be irritant

#### **Suspension Polymerization:**



10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 2 of 8

Organic droplets:  $\sim 1 \ \mu m - 1 \ cm$ Drop size determined by impeller speed Within each droplet, have

- initiator
- monomer
- $\Rightarrow$  Batch reactor within droplet
  - Kinetics are identical to typical large scale free radical polymerization
  - initiation
  - propagation
  - termination
  - steady state assumption



Concerned with avoiding drop coalescence

- $\rightarrow$  premix initiator + monomer  $\rightarrow$  agitate H2O phase + add organic phase
  - ~ 20 30 % vol
- $\rightarrow$  adjust impellar speed to get desired drop size  $\rightarrow$  add stabilizer (PVOH)
- $\rightarrow$  continue stirring at more gentle speed and increase T to 40°C  $\rightarrow$  80°C depending on which initiator you're using
- $\rightarrow$  initiator activation
- $\rightarrow$  go to near complete conversion
- (may need to increase T for final  $\% \pi$ )

Products:

- glassy rigid beads often called "latex beads"
- very uniform
- nice spherical shapes



10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 3 of 8 vary surface chain:



cation exchange

Na⊕

Form Pores:

- add non-solvent + monomer w/organic phase



If monomer (e.g. styrene) is well-dissolved in solvent, but solvent is poor for high MW polymer (e.g. cyclohexane)



10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 4 of 8



The following figures are adapted from page 250 of *Polymer Synthesis*:<sup>1</sup>

Fig 12.2. Diagrams showing the three stages of emulsion polymerization: (I) Micelles increasing; (II) micelles exhausted, droplet phase remains; (III) droplet phase exhausted.

n number of particles per unit volume

n\* number of micelles per unit volume

[M] monomer concentration in the droplets and in the particles

R<sub>p</sub> overall rate of polymerization

 $p_n$  instantaneous degree of polymerization

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 5 of 8

<sup>&</sup>lt;sup>1</sup> Rempp, P. and Edward W. Merrill. *Polymer Synthesis*. Second Edition. New York, NY: Hüthig and Wepf, 1991. page 250.

### **Rate of Conversion, Emulsion Polymerization**

$$\overline{p_n} = k_p [M] \Delta t = k_p [M] \prod_{rate of production of}^{T}$$
rate of production of
In general:
$$R_p = \frac{n}{2} k_p [M] = \text{monomer molecules per sec per cm}^3$$
# particles I/mol-sec
per cm<sup>3</sup>

\* (recall that the rate, -dm/dt of disappearance of monomer molecules **per particle** per second is  $\frac{1}{2} k_p [M]$ )

free radicals

In general, for conversion:

$$\frac{d\pi}{dt} = \underbrace{\frac{n}{2} k_{p} [M]}_{e} \cdot \underbrace{\frac{1}{C}}_{e} = \underbrace{n \cdot \frac{-dm}{dt}}_{i} \underbrace{\frac{1}{m_{o}}}_{initial \# of monomer molecules charged}$$
  
= monomers/sec-cm<sup>3</sup>

 $C = \frac{\Theta N_A \rho_m}{M_u}$  = initial # of monomers in total volume

How much you've added

where  $\Theta = cm^3$  monomer charged/cm<sup>3</sup> of total volume = volume fraction  $\rho = density$  of monomer (g/cm<sup>3</sup>)  $N_A = Avogadro's$  number = 6.023x10<sup>23</sup> molecules/mole  $M_u = MW$  of monomer (repeat) unit

### For Stage I:

$$\begin{bmatrix} M \end{bmatrix} \cong \begin{bmatrix} M \end{bmatrix}_{eq} = \begin{bmatrix} M \end{bmatrix}_{o} (1 - \Theta_{2})$$
  
where  $\begin{bmatrix} M \end{bmatrix}_{o} =$  pure monomer  
 $\Theta_{2} =$  vol. Fraction of polymer in particles at equilibrium  
 $n = n(t)$  b/c number of particles  $\uparrow$   
 $\Rightarrow \int_{0}^{\pi_{l}} d\pi = \frac{1}{C} \int_{0}^{t_{l}} n(t) \frac{k_{p}}{2} \begin{bmatrix} M \end{bmatrix}_{o} (1 - \Theta_{2}) dt$ 

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 6 of 8

### For Stage II:

Surfactant consumed, droplets still exist Growing particles

$$\begin{bmatrix} M \end{bmatrix} = \text{constant} = \begin{bmatrix} M \end{bmatrix}_o (1 - \Theta_2)$$
  
n = constant  
$$\int_{\pi_I}^{\pi_I} d\pi = \frac{1}{C} \int_{t_I}^{t_{II}} \frac{n}{2} k_p \begin{bmatrix} M \end{bmatrix}_o (1 - \Theta_2) dt$$
  
constant

$$\Rightarrow \pi_{II} - \pi_{I} = \frac{nk_{p}[M]_{o}(1 - \Theta_{2})}{2C}(t_{II} - t_{I})$$

### Stage III:

Droplets exhausted, only particles

On avg, particles all same size, grow at same rate

Here, monomer is consumed w/in particles, as monomer  $\rightarrow$  polymer, [M]  $\downarrow$  w/in particle.

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} M \end{bmatrix}_o (1 - \pi)$$

$$\Rightarrow \int_{\pi_{II}}^{\pi} d\pi = \frac{1}{C} \int_{t_{II}}^{t} k_p \begin{bmatrix} M \end{bmatrix}_o (1 - \pi) \frac{n}{2} dt$$

$$\Rightarrow \frac{-\Delta \ln(1 - \pi)}{\Delta t} = \frac{k_p \begin{bmatrix} M \end{bmatrix}_o n}{2C}$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 7 of 8



# For Stage I:

$$n = f\left(C_{s'}a_{s'}\rho,\nu_{n'}\frac{dm}{dt}\right)$$

where  $C_s$  = surfactant concentration  $a_s$  = area of surfactant molecule (of polar head)  $\rho$  = rate of radical production  $v_n$  = vol of a single repeat dm/dt = rate of monomer polym.

Empirical expression:

$$n \approx 0.53 (C_s a_s)^{\frac{3}{5}} \rho^{\frac{2}{5}} \left( -v_n q \frac{dm}{dt} \right)$$

$$q = \frac{\text{vol polymer + vol monomer}}{\text{vol polymer}}$$
 inside the particle (related to [M])

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 15 Page 8 of 8