
10.569 Synthesis of Polymers 
Prof. Paula Hammond 

Lecture 15: Processing Approaches: Suspension (bead) Polymerization 
Processes, Polyvinyl Chloride via Precipitation Polymerization, Polyethylene 

via Radical Polymerization 
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Rate of conversion, emulsion polymerization 
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Emulsion Polymerization:  monomer → porous particles 
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    introduce plasticizer 
    more readily processible, aerodyn. in powder form 
 
Common emulsion polymers: 
 styrene + copolymers 
 vinyl chlorides   ex. Pleather 
 butadiene 
 vinylidene chloride 
 vinyl acetate 
 vinyl acrylates (acrylics) 
 methyl acrylates 
 
Advantages: 
 - low η (viscosity) 
 - great T control 
 - final product → fine powder 
        or water form ⇒ coatings 
 
Disadvantages: 
 - a lot of soap as impurity 
 ex. In medical applications, can be irritant 
 

Suspension Polymerization: 
 (Pearl of Bead) 
 “Ingredients” 
 monomer – organic phase 
 aqueous phase 
 initiator (soluble in monomer phase) 
 stabilizer, often a polymer, such as PVOH hydrophobic 

backbone  
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Organic droplets:  ∼ 1 μm – 1 cm 
Drop size determined by impeller speed 
Within each droplet, have 
 - initiator 
 - monomer 
⇒ Batch reactor within droplet 
 Kinetics are identical to typical large scale free radical polymerization 
 • initiation 
 • propagation 
 • termination 
 • steady state assumption 
 
 
 

Concerned with avoiding drop coalescence  
→ premix initiator + monomer 
→ agitate H2O phase + add organic phase 
 ∼ 20 – 30 % vol 
→ adjust impellar speed to get desired drop size 
→ add stabilizer (PVOH) 
→ continue stirring at more gentle speed and 
increase T to 40oC → 80oC depending on which 
initiator you’re using 
→ initiator activation 
→ go to near complete conversion  
(may need to increase T for final % π) 
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Products: 
 - glassy rigid beads often called “latex beads” 
 - very uniform 
 - nice spherical shapes 
 

 

+ x-linked network

styrene divinyl benzene
(tetrafunctional)  
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vary surface chain: 
 

bead
SnCl4

ClCH2OCH3

CH2Cl
N(CH3)31.

NaOH2.
CH2 N

OH

anion exchange
or

H2SO4
SO3

Na

cation exchange  
 
 
Form Pores: 
- add non-solvent + monomer w/organic phase 
 

 

Form connected channels of non-solvent 
 
→ go to high π 
 flash off non solvent

 
 
If monomer (e.g. styrene) is well-dissolved in solvent, but solvent is poor for high 
MW polymer (e.g. cyclohexane) 
 

styrene
cyclohexane
20 – 30 %

PS, Tg ∼ 100oC

pockets of 
cyclohexane

styrene
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pockets of 
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PS spheres Increase T to 120oC 
⇒ expansion – foaming effect 
  → very large increases in size and 
decreases in density (mostly air) 
⇒ STYROFOAM® 
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The following figures are adapted from page 250 of Polymer Synthesis:1
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Fig 12.2.  Diagrams showing the three stages of emulsion polymerization: (I) 
Micelles increasing; (II) micelles exhausted, droplet phase remains; (III) droplet 
phase exhausted. 
n number of particles per unit volume 
n* number of micelles per unit volume 
[M] monomer concentration in the droplets and in the particles 
Rp overall rate of polymerization 

np  instantaneous degree of polymerization 
 

                                                 
1 Rempp, P. and Edward W. Merrill. Polymer Synthesis. Second Edition. New York, 
NY: Hüthig and Wepf, 1991. page 250. 
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Rate of Conversion, Emulsion Polymerization 

 n p p
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            rate of production of free radicals 
 mol/l 
In general: 
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* (recall that the rate, -dm/dt of disappearance of monomer molecules per particle 

per second is 
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In general, for conversion: 
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 How much you’ve added
 
where Θ = cm3 monomer charged/cm3 of total volume = volume fraction 
 ρ = density of monomer (g/cm3) 
 NA = Avogadro’s number = 6.023x1023 molecules/mole 
 Mu = MW of monomer (repeat) unit 
 

For Stage I:  
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 where  [M]o = pure monomer 
  Θ2 = vol. Fraction of polymer in particles at equilibrium 
  n = n(t) b/c number of particles ↑ 
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For Stage II:  
Surfactant consumed, droplets still exist 
 Growing particles 
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Stage III:   
Droplets exhausted, only particles 
 On avg, particles all same size, grow at same rate 
 
 Here, monomer is consumed w/in particles, as monomer → polymer,  
 [M]↓ w/in particle. 
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For Stage I: 
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 where Cs = surfactant concentration 
  as = area of surfactant molecule (of polar head) 
  ρ = rate of radical production 
  νn = vol of a single repeat 
  dm/dt = rate of monomer polym. 
 
Empirical expression: 
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polymer vol

monomer  volpolymer  vol +
=q     inside the particle (related to [M]) 
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