(1) Beginning with linearized material and energy balances for the shower, expressed in physical terms,

$$
\begin{aligned}
& \mathrm{F}=\mathrm{F}_{\mathrm{h}}+\mathrm{F}_{\mathrm{c}} \\
& \begin{aligned}
\mathrm{T}=\frac{\mathrm{F}_{\mathrm{hr}} \mathrm{~T}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}} \mathrm{~T}_{\mathrm{cr}}}{\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}} & +\left[\frac{\mathrm{T}_{\mathrm{hr}}}{\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}}-\frac{\mathrm{F}_{\mathrm{hr}} \mathrm{~T}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}} \mathrm{~T}_{\mathrm{cr}}}{\left(\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}\right)^{2}}\right]\left(\mathrm{F}_{\mathrm{h}}-\mathrm{F}_{\mathrm{hr}}\right)+\frac{\mathrm{F}_{\mathrm{hr}}}{\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}}\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{hr}}\right) \\
& +\left[\frac{\mathrm{T}_{\mathrm{cr}}}{\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}}-\frac{\mathrm{F}_{\mathrm{hr}} \mathrm{~T}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}} \mathrm{~T}_{\mathrm{cr}}}{\left(\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}\right)^{2}}\right]\left(\mathrm{F}_{\mathrm{c}}-\mathrm{F}_{\mathrm{cr}}\right)+\frac{\mathrm{F}_{\mathrm{cr}}}{\mathrm{~F}_{\mathrm{hr}}+\mathrm{F}_{\mathrm{cr}}}\left(\mathrm{~T}_{\mathrm{c}}-\mathrm{T}_{\mathrm{cr}}\right)
\end{aligned}
\end{aligned}
$$

derive an expression for each individual element $\lambda_{i j}$ of the RGA from the definition

$$
\begin{aligned}
\lambda_{\mathrm{ij}} & \equiv \frac{\text { gain of the } \mathrm{x}_{\mathrm{mj}} \rightarrow \mathrm{y}_{\mathrm{i}} \text { loop with other loops open }}{\text { gain of the } \mathrm{x}_{\mathrm{mj}} \rightarrow \mathrm{y}_{\mathrm{i}} \text { loop with other loops perfect }} \\
& =\frac{\left.\frac{\partial \mathrm{y}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{mj}}}\right|_{\mathrm{xk}} \neq \mathrm{x}_{\mathrm{mj}} \text { constant }}{\left.\frac{\partial \mathrm{y}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{mj}}}\right|_{\mathrm{y}_{\mathrm{k}}} \neq \mathrm{y}_{\mathrm{i}} \text { constant }}
\end{aligned}
$$

- (please use the nomenclature of the Lecture Notes)
(2) Beginning with linearized material and energy balances for the shower, expressed in scaled deviation terms,

$$
\begin{aligned}
& \mathrm{F}^{* \prime}=\frac{\Delta \mathrm{F}_{\mathrm{h}}}{\Delta \mathrm{~F}} \mathrm{~F}_{\mathrm{h}}^{* \prime}+\frac{\Delta \mathrm{F}_{\mathrm{c}}}{\Delta \mathrm{~F}} \mathrm{~F}_{\mathrm{c}}^{* \prime} \\
& \mathrm{~T}^{* \prime}=\left[\frac{\mathrm{T}_{\mathrm{hr}}-\mathrm{T}_{\mathrm{r}}}{\mathrm{~F}_{\mathrm{r}}}\right] \frac{\Delta \mathrm{F}_{\mathrm{h}}}{\Delta \mathrm{~T}} \mathrm{~F}_{\mathrm{h}}^{* *}+\left[\frac{\mathrm{T}_{\mathrm{cr}}-\mathrm{T}_{\mathrm{r}}}{\mathrm{~F}_{\mathrm{r}}}\right] \frac{\Delta \mathrm{F}_{\mathrm{c}}}{\Delta \mathrm{~T}} \mathrm{~F}_{\mathrm{c}}^{* \prime}+\frac{\mathrm{F}_{\mathrm{hr}}}{\mathrm{~F}_{\mathrm{r}}} \frac{\Delta \mathrm{~T}_{\mathrm{h}}}{\Delta \mathrm{~T}} \mathrm{~T}_{\mathrm{h}}^{* \prime}+\frac{\mathrm{F}_{\mathrm{cr}}}{\mathrm{~F}_{\mathrm{r}}} \frac{\Delta \mathrm{~T}_{\mathrm{c}}}{\Delta \mathrm{~T}} \mathrm{~T}_{\mathrm{c}}^{* \prime}
\end{aligned}
$$

derive the RGA matrix $\underline{\underline{\Lambda}}$ from the matrix of gain coefficients $\underline{\underline{\mathrm{P}}}_{\mathrm{m}}{ }^{*}$.

$$
\left.\underline{\underline{\Lambda}}=\underline{\underline{\mathrm{P}_{\mathrm{m}}^{*}}} \otimes \underline{\underline{\left(\mathrm{P}_{\mathrm{m}}^{*-1}\right.}}\right)^{\mathrm{T}}
$$

- (please use the nomenclature of the Lecture Notes)
(3) For each variable in the shower process, state your reference value and scaling (max-min) limits. Be sure to include units. Then calculate numeric values for the RGA.
- Which pairing of variables do you recommend for control?
- Can you find other reference values that are reasonable, but would lead you to the opposite conclusion?
(4) Calculate DC for various combinations of the disturbance variables. The disturbance variables should be set at their minimum, zero, and maximum deviations. Express the results as a plot of DC versus the angle of the disturbance vector, as shown in the Notes.
- (the example in the Notes presumed that each reference value was centered in its operating range - your reference and scaling values may well be different, so that your angles may not be uniformly spaced at 45°.)

