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8.0 context and direction 
Knowledge of the process is the basis for successful process control.  In 
Lesson 7, we used process knowledge to guide, through tuning 
correlations, our choice of controller parameters.  In this lesson, process 
knowledge will guide our choice of control structure itself: by making 
additional process measurements, we will augment the single-loop 
feedback control scheme to give it greater capability. 
 

DYNAMIC SYSTEM BEHAVIOR 
 
8.1 a process with identifiable intermediate variable 
We begin with a process that has three inputs, two of them disturbances, 
and one output that we will wish to control.  As usual, transfer functions 
Gd1(s), Gd2(s), and Gm(s) may refer to the same assembly of equipment, 
but specify how the output variable y depends on each particular input. 
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The Laplace domain process description is then 
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We imagine a case in which process Gm(s) could be divided into two parts, 
connected by a measurable intermediate variable xi: this could be as 
simple as two tanks in series, as in Lesson 4.  Having specified some of 
the interior structure of Gm, we consider xd2 to be typical of disturbances 
that affect the process further upstream and xd1 to affect the process 
downstream, after the intermediate variable.    
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The process description becomes 
 

revised 2006 Mar 29  1 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 8: Cascade and Feedforward Control Schemes 

)s(xG)s(xGG)s(xGG)s(y '
1d1d

'
2d1ma2d

'
m1m2m

' ++=  (8.1-2) 
 
Equations (8.1-1) and (8.1-2) describe the same process, so they must be 
equivalent.  Comparing them, we find 
 

1m2mm GGG =  (8.1-3) 
 
and  
 

1ma2d2d GGG =  (8.1-4) 
 
Also, the intermediate variable is given by  
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8.2 response to disturbances 
Suppose, for illustration, that we let each of these transfer functions be 
first order.  Then the responses of xi and y to a step in xd2 are shown in 
Figure 8.2-1. 
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Figure 8.2-1.  Step response of intermediate and output variables 

 
We observe that the intermediate variable responds before the output.  
Perhaps this can help us to improve the control of y. 
 
 

CONTROL SCHEME 
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8.3 step 1 - specify a control objective for the process 
Our control objective is to maintain the outlet variable y at set point. 
 
8.4 step 2 - assign variables in the dynamic system 
The controlled variable is y.  The manipulated variable affects the 
controlled variable through the transfer function.  These assignments are 
familiar from previous Lessons.  However, we have some new 
assignments to make: 

• By looking in more detail at the composition of this process, we 
identify an intermediate variable that influences the controlled 
variable, responds to disturbances before the controlled variable 
does, and responds to the manipulated variable, as well.  We can 
use this extra information in a scheme called cascade control. 

• Furthermore, suppose we can measure a disturbance variable that 
frequently disturbs the process.  By this means, we can forecast 
when the controlled variable is about to be altered and forestall it 
in a scheme called feedforward control. 

 
8.5 step 3 - cascade control scheme  
The idea is to insert a secondary feedback control loop between the 
controlled variable y and manipulated variable xm.  The secondary loop 
controls intermediate variable xi.  This variable must hold several 
qualifications: 

• it must respond to important disturbances (those that significantly 
affect the controlled variable) 

• it must also convey the effects of such disturbances to the 
controlled variable 

• it must respond to the manipulated variable 
 
The intermediate variable xi is called the secondary variable, and the 
control scheme now features a new secondary loop within the original 
primary loop. 
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Figure 8.5-1.  Block diagram for cascade control structure 
 
The secondary loop controls the intermediate (secondary) variable xi by 
adjusting the manipulated variable xm.  The primary loop controls the 
controlled variable y by manipulating the set point of the secondary 
controller xo1.  Thus we have the same controlled variable and set point as 
before, but the valve has been augmented by an inner control loop. 
 
Disturbances xd2′ are rejected by the secondary loop before they affect the 
full process, and thus response is quicker and the impact on y′ less.  The 
primary loop is necessary to handle the other disturbances, such as xd1′, 
that always exist.  The extra layer of control does not degrade the response 
to xd1′, because the process is usually much slower than the controller. 
 
Cascade can be carried to more nested levels.  For example, in Figure 8.5-
2 the composition controller sets a temperature set point in the secondary 
loop; the temperature controller in turn sets the flow set point for the 
tertiary loop. 
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Figure 8.5-2.  Three-level cascade control 
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Cascade control is still feedback control, performed with conventional PID 
control algorithms.  The improvement comes because we're looking inside 
the process, discriminating among disturbances, and applying feedback 
with increased deftness. 
 
8.6 step 3 - feedforward control scheme 
We get closer to the root of the problem if we react directly to the 
disturbance, predicting what the manipulated variable should do, not 
waiting for a process response.  This is the topic of feedforward control.  
We contrast simple feedback control in Figure 8.6-1 with feedforward 
control in Figure 8.6-2: 
 

Gd2(s)

Gm(s)

Gs(s)

Gc(s)

Gv(s)

-

x'
d2(s)

x'
m(s) y' (s)

y'sp(s) Gsp(s)

Gd1(s)
x'

d1(s)

Gd2(s)

Gm(s)

Gs(s)

Gc(s)

Gv(s)

-

x'
d2(s)

x'
m(s) y' (s)

y'sp(s) Gsp(s)

Gd1(s)
x'

d1(s)

 
 

Figure 8.6-1.  Feedback control diagram 
 
In feedback control, disturbance xd2 proceeds through the process (Gd2) to 
affect controlled variable y.  The controller reacts to the resulting error and 
adjusts the manipulated variable; the change in manipulated variable 
proceeds through the process (Gm) after the fact to reduce the error.   
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Figure 8.6-2.  Feedforward control diagram 
 
In feedforward control, disturbance xd2 proceeds in parallel through the 
process (Gd2) and through the feedforward controller (Gff).  The controller 
adjusts the manipulated variable to counteract the disturbance, so that 
disturbance and manipulated variable affect output variable y together.  In 
the very best of cases, the manipulated variable would compensate the 
disturbance step for step, so that the controlled variable would never be 
affected! 
 
We also contrast feedforward with the cascade structure of Section 8.5.  
Feedforward control also adds another sensor and controller.  However, 
the concept differs from that of cascade in that the disturbance is 
measured, but the manipulated variable does not affect it - there is no 
feedback.  Feedforward is thus more specific than cascade control: it is 
designed to head off a particular disturbance.  However, it cannot measure 
how well it did, nor can it respond to other disturbances, such as xd1, that 
might affect the controlled variable.  Hence feedforward is to be applied in 
conjunction with a conventional feedback loop.  Both the feedback and 
feedforward controllers adjust the manipulated variable in Figure 8.6-3. 
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Figure 8.6-3.  Feedforward/feedback control diagram 
 
The feedforward algorithm is not conventional PID.  Rather it is specific 
to the process and the disturbance.  We wish to specify the feedforward 
controller transfer function Gff to minimize the effect of xd2 on y.  Ideally, 
we want y′(s) = 0, and from Figure 8.6-2 or 8.6-3 this requires that 
 

mvsf

2d
ff GGG

GG −
=  (8.6-1) 

 
The parallel path through the feedforward controller makes use of advance 
warning about the disturbance.  Given perfect process models, plus the 
ability to render those in transfer function Gff, the compensation can 
completely negate the effect of xd2.  Of course, perfection is unlikely, as 
we will see later. 
 
8.7 summary comparison between cascade and feedforward 
On first encounter, one is apt to confuse cascade and feedforward with one 
another.  Table 8.7-1 shows a side-by-side comparison: assume an existing 
process with a feedback controller, such as that in Figure 8.6-1.  Call this 
controller the primary controller, and compare adding either a secondary 
feedback controller in a cascade scheme (Figure 8.5-1), or a feedforward 
controller in a feedforward/feedback scheme (Figure 8.6-3).  The table 
highlights the similarities and differences of the two schemes. 
 
We should conclude the comparison with a clarification of concept: think 
of “cascade” and “feedforward” as ways to arrange controllers, not 
confined to the specific arrangements given above.  That is, it is possible 
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to have a feedforward controller that adjusts the set point of a feedback 
controller.  In this circumstance, we have both feedforward control and a 
cascade structure; we might say that the feedforward controller “cascades” 
to a secondary controller.  We will show an example in the next section. 
 

Table 8.7-1.  Comparison between cascade and feedforward control 
similarities 
primary controller attempts to correct deviations from set point 
primary controller set point unchanged 
manipulated variable unchanged 
add extra sensor and controller 
differences cascade (Figure 8.5-1) feedforward (Figure 8.6-3) 
extra measurement: intermediate variable disturbance variable 
characteristics of the new 
measured variable: 

intermediate variable  
• is affected by disturbances 

and manipulated variable 
• affects controlled variable 

measured disturbance  
• is not affected by 

manipulated variable 
• affects controlled variable 

algorithm of added controller: PID specific to process model 
manipulated variable: directed by secondary 

controller 
directed by both feedforward 
and feedback controllers 

primary controller action: varies set point of secondary 
controller 

varies manipulated variable, as 
before 

helps by: reducing the degree of 
disturbance that reaches the 
controlled variable 

anticipating effects of a 
particular disturbance and 
responding to compensate 

 
8.8 example  
A feed stream is pre-heated using a heating oil in a shell-and-tube 
exchanger.  The outlet temperature is controlled by manipulating the flow 
rate of the oil. 
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Figure 8.8-1  Single-loop control of outlet temperature 
 
The process is subject to several disturbances: the flow rate and inlet 
temperature of both process (feed) and service (heating oil) streams may 
vary.  The latter disturbances are particularly troublesome; because the 
heating oil is supplied from a header that feeds other, larger users, swings 
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in the supply pressure and temperature are frequent.  We propose 
employing additional measurements and control loops, arranged as shown 
in Figure 8.8-2. 
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Figure 8.8-2  Multi-loop control scheme for outlet temperature 

 
Flow control of the service stream is now effected by a secondary loop.  
Two primary controllers cascade to this new secondary loop.  The first is 
the original feedback controller for the process temperature.  The second is 
a feedforward controller from the oil temperature.   
 
Should the oil supply pressure decrease, the secondary flow controller will 
respond by opening the supply valve.  This will allow the oil flow rate to 
return to its desired value.  The cascade structure responds to the pressure 
disturbance before the controlled variable is affected. 
 
Should the oil supply temperature decrease, the feedforward controller 
will respond by directing the secondary controller to increase the flow 
rate.  The higher flow rate of heating oil will tend to maintain the heat duty 
in the heat exchanger even as the supply temperature falls.   
 
The temperature controller on the oil requires a feedforward algorithm 
because the manipulated variable (heating oil flow) does not affect the 
measured variable (heating oil temperature).  The temperature controller 
on the process stream is a feedback controller that responds to any error in 
that temperature, such as may arise from disturbances in the process 
stream flow and temperature.  Both controllers cascade to a secondary 
controller. 
 

EQUIPMENT 
 
8.9 practical feedforward controllers 
Of course there is an overwhelming variety of process models, but if we 
recall that a large class of processes may be successfully represented by 
FODT, we can derive a feedforward controller with some claim to 
generality (Marlin, 2000).  Lumping the valve and sensor into the process 
description, the transfer function (8.6-1) becomes 
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We generalize this form by associating a controller gain with the ratio of 
process gains, a lead time with the xm process path, a lag time with the xd2 
process path, and a dead time with the difference between disturbance and 
manipulated process dead times.  These four parameters may then be 
tuned, as with PID parameters, to improve controlled variable response to 
xd2′. 
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The effect of gain is to amplify the controller response to an input.  The 
gain satisfies the steady state relationship between disturbance and 
manipulated variables.  The effect of dead time is to delay the controller's 
response, so that it will not affect the controlled variable prematurely.  
Such a step is appropriate if the disturbance dead time exceeds that of the 
process.  However, if the disturbance dead time is less, perfect control 
requires a negative θff, which implies predicting the onset of future 
disturbances!  Such a time-machine would be very useful, for many 
purposes, but we are not likely to find one - thus the parameter θff would 
be set to zero. 
 
We can illustrate (8.9-2) by calculating the output of the controller upon 
receiving a step input of magnitude A.  Applying the step change and 
inverting, we find 
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The lead/lag elements shape the development of the response, as shown in 
Figure 8.9-1.  For example, if Tlag is set to be greater than Tlead, the 
controller output increases with time.  This is appropriate if the 
disturbance propagates more slowly through the process than does the 
manipulated variable.  If the reverse is true, then a more vigorous 
manipulated variable response is in order from the start, and so Tlead is set 
larger than Tlag.   
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Figure 8.9-1  Response of controller Gff to a step input 

 
8.10 summing feedforward and feedback signals at one valve 
Each controller specifies, at any time, how much the valve should be 
moved from its previous position.  These two outputs are summed and 
then sent to the valve transducer.   
 
It may be that the two controllers will oppose each other, so that the sum 
of the outputs is a smaller movement than each individual controller 
would have directed.  This is not necessarily a problem: each controller 
responds in its own area of expertise (feedback responding to present 
error; feedforward forecasting the effects of present disturbance) and the 
sum of the outputs addresses both concerns. 
 
Of course, the sum of the controller outputs could fall outside the physical 
0 - 100% range of the valve.  In this case, the valve can move only to its 
limit in response.  If this is a frequent occurrence, the manipulated variable 
may be insufficiently strong to overcome disturbances. 
 
8.11 flow control 
As we have already seen in examples, a very common application of a 
cascade scheme is to use a flow controller as an inner cascade loop.  This 
allows the flow to be less affected by, for example, pressure differences, 
so that it can be a more reliable manipulated variable in the outer loops. 
 
We examine the flow control loop.  The equipment comprises a valve, a 
flowmeter, and connecting pipe.   
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Figure 8.11-1  Equipment to measure and manipulate flow 
 
If we regard the valve as the final control element and the flowmeter as the 
sensor, there is really no process left.  Hence a block diagram will show 
the process as a unity transfer function: the controlled variable and 
manipulated variable are identical: 
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Figure 8.11-2  Block diagram of flow control loop 

 
The valve affects the flow through the stem position, as described in 
transfer function Gv.   The diagram also identifies two disturbances that 
affect flow: a change in the pressure difference across the valve (as might 
result from variations in sources and sink conditions) and changes in 
physical properties of the flowing fluid.  All these transfer functions come, 
as in other examples, from a linearized model of flow through a valve. 
 
After our emphasis on distinguishing manipulated and controlled 
variables, having the manipulated variable be identical to the controlled 
variable may seem peculiar.  An alternative point of view is to consider 
the manipulated variable to be the valve stem position, as shown in Figure 
8.11-3. 
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Figure 8.11-3  Alternative block diagram of flow control loop 

 
In effect, the transfer function that describes how valve stem position 
affects flow has moved from Gv in Figure 8.11-2 to Gm in Figure 8.11-3.  
In this series of Lessons, we have preferred the point of view of Figure 
8.11-2; that is, a controller acts through a final control element to produce 
a flow, which may then be used to manipulate a process output. 
 

CLOSED LOOP BEHAVIOR 
 
8.12 cascade performance 
From Figure 8.5-1, we derive the transfer function for the closed loop 
cascade structure.  With nested loops in block diagrams, it is best to begin 
with the inner loop. 
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so that 
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where the transfer function around the secondary loop is 
 

2s2cv2m2L GGGGG =  (8.12-3) 
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With xi′ known, we continue in the outer loop. 
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Solving for y′ 
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where the transfer function around the primary loop is 
 

1s1c2cv2m1m1L GGGGGGG =  (8.12-6) 
 
Equation (8.12-5) is general for a two-loop cascade structure with the 
disturbances arranged as in Figure 8.5-1.  It can be specialized by 
substituting particular transfer functions for the components in the 
cascade. 
 
8.13 cascade tuning 
Marlin (2000) suggests tuning the inner loop first, with the outer loop in 
manual setting.  Then tune the outer loop with the inner loop in automatic 
setting. 
 
8.14 cascade closed loop stability 
The characteristic equation for the cascade structure, obtained from (8.12-
5), contains the transfer functions for both controllers.  Hence both 
controllers affect the poles and thus stability of the cascade. 
 
8.15 feedforward performance and stability 
From Figure 8.6-3, we derive the transfer function for the closed loop 
feedback/feedforward structure. 
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Solving for controlled variable y′ 
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where the transfer function around the feedback loop is 
 

scvmL GGGGG =  (8.15-3) 
 
Notice that the feedforward controller affects only the transfer function for 
disturbance xd2; other disturbances and the set point have the usual 
feedback loop transfer functions.  By (8.6-1) we try to make the xd2 
transfer function zero.  However, if it is not, the feedback controller is also 
available, through the transfer function denominator, to respond to xd2, as 
it does to other disturbances.   
 
Because the characteristic equation obtained from (8.15-2) does not 
depend on the feedforward controller, adding a feedforward loop has no 
effect on tuning the feedback controller for closed loop stability.  Even so, 
if the feedforward controller itself is unstable, the ensemble is likely to be 
inoperable. 
 
8.16 feedforward tuning 
Ideally all the other disturbances would subside so that the feedback loop 
could be put in manual and the feedforward loop tuned to respond to its 
particular disturbance.  One may not be so fortunate, however. 
 
8.17 conclusion 
By going to the trouble and expense of extra measurements, and obtaining 
deeper knowledge of the process, we are enabled to improve on the 
performance of the single-loop PID controller.  This is not to say that 
cascade or feedforward enhancements are always to be recommended - 
they must be technically feasible (the measurements and character of the 
new variables being appropriate) and economically justified.  This of 
course, is a familiar story to engineers. 
 
Feedforward and cascade point the way to further control schemes that 
make use of process models.  Various forms of model-based control can 
offer advantages in single control loops, but really come into their own 
when we consider how individual control loops may interact - that is, 
when realistic process models are MIMO - multiple input/multiple output. 
 
8.18 reference 
Marlin, Thomas E. Process Control. 2nd ed. Boston, MA: McGraw-Hill, 2000.
ISBN: 0070393621. 
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