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5.0 context and direction 
From Lesson 3 to Lesson 4, we increased the dynamic order of the 
process, introduced the Laplace transform and block diagram tools, took 
more account of equipment, and discovered how control can produce 
instability.  Now we change the process: our system models have 
previously depended on material balances, but now we will write the 
energy balance.  We will also introduce the integral mode of control in the 
algorithm. 
 

DYNAMIC SYSTEM BEHAVIOR 
 
5.1 a heated tank 
We consider a tank that blends and heats two inlet streams.  The heating 
medium is a condensing vapor at temperature Tc in a heat exchanger of 
surface area A. 
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For the present, we continue to assume constant mass in an overflow tank.  
Writing the material balance,  
 

FFF 21 ρ=ρ+ρ  (5.1-1) 
 
This is not yet the time for complications: we will approximate the 
physical properties of the liquid (density, heat capacity, etc.) as constants.  
We will also simplify the problem by assuming that the flow rates remain 
constant in time.  The energy balance is 
 

( ) )TT(FC)TT(UA)TT(CF)TT(CF)TT(VC
dt
d

refopocref2p2ref1p1refop −ρ−−+−ρ+−ρ=−ρ (5.1-2) 
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where the overall heat transfer coefficient is U and the thermodynamic 
reference is Tref.  We identify a steady-state operating reference condition 
with all variables at their desired values. 
 

( ) )TT(FC)TT(UA)TT(CF)TT(CF0)TT(VC
dt
d

reforporcrrefr2p2refr1p1reforp −ρ−−+−ρ+−ρ==−ρ

 (5.1-3) 
 
We subtract (5.1-3) from (5.1-2), define deviation variables, and rearrange 
to standard form. 
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To make some sense of the equation coefficients, define the tank residence 
time 
 

F
V

R =τ  (5.1-5) 

 
and a ratio of the capability for heat transfer to the capability for enthalpy 
removal by flow. 
 

pFC
UA
ρ

=β  (5.1-6) 

 
β thus indicates the importance of heat transfer in the mixing of the fluids.  
We now use (5.1-5) and (5.1-6) to define the dynamic parameters: time 
constant and gains. 
 

β+
τ

=τ
1

R  (5.1-7) 

 
Thus the dynamic response of the tank temperature to disturbances is 
faster as heat transfer capability (β) becomes more significant.  For no heat 
transfer (β = 0) the time constant is equal to the residence time. 
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Gains K1 and K2 show the effects of inlet temperatures T1 and T2 on the 
outlet temperature.  For example, a change in T1 will have a small effect 
on To if the inlet flow rate F1 is small compared to overall flow F.  
  

β+
β

=
1

K3  (5.1-10) 

 
Gain K3 shows the effect of changes in the temperature Tc of the 
condensing vapor.  For high heat transfer capability, β is large, and gain 
K3 approaches unity.   
 
Our system model of the heated tank is finally written 
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++=+τ  (5.1-11) 

 
which shows a first-order system with three inputs.  As is our custom, we 
will take the initial condition on T′

o as zero. 
 
5.2 solving by laplace transform 
Solution by Laplace transform is straightforward: 
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 (5.2-1) 

 
Output T′

o is related to three inputs, each through a first-order transfer 
function. 
 
5.3 response of system to step disturbance 
Suppose the tank is disturbed by a step change ΔT1 in temperature T1.  We 
have studied first-order systems, so we already know what the first-order 
step response looks like: at the time of disturbance td, the output T′

o will 
depart from its initial zero value toward an ultimate value equal to the 
product of gain K1 and the step ΔT1.  The time required depends on the 
magnitude of time constant τ: when time equal to one time constant has 
passed (i.e., t = td + τ) the outlet temperature will be about 63% of its way 
toward the long-term value. 
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However, doing the formalities for two step disturbances and one steady 
input, 
 

( ) ( ) 0TttUTTttUTT '
c2d2

'
21d1

'
1 =−Δ=−Δ=  (5.3-1) 

 
We take Laplace transforms of these input variables: 
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Then we substitute (5.3-2) into the system model (5.2-1). 
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We must invert each term; this is most easily done by processing the 
polynomial first and then applying the time delay.  Thus 
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and finally 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−Δ+⎟

⎠
⎞

⎜
⎝
⎛ −−Δ= τ

−−
τ

−− )tt(

2d22

)tt(

1d11
*
o

2d1d

e1ttUTKe1ttUTKT  (5.3-6) 

 
Figure 5.3-1 shows a sample calculation for opposing input disturbances.  
Notice that the gains K1 and K2 are less than unity.  This is because we 
dilute each disturbance with other streams: streams of matter (two input 
flows) and energy (through the heat transfer surface).  From the plot, can 
you tell which gain is greater? 
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Figure 5.3-1:  Response of outlet temperature to steps in two inlets 
 
5.4 stability of the heated tank 
System model (5.2-1) has one negative pole, s = -τ-1

, because the time 
constant is a positive quantity.  Hence, the system is stable to all bounded 
inputs.  Therefore, a blip in the inlet temperature will not set off wild 
temperature excursions at the outlet. 
 
5.5 numerical solution of ODEs 
Analytical solutions to equations are desirable, but many useful equations 
simply cannot be solved.  When we “solve an ODE numerically” we 
execute a set of calculations that results in a “numerical solution”: in 
effect, a table of numbers.  One column in that table contains values of the 
independent variable, and the other column holds associated values of the 
dependent variable.  A table of numbers lacks the economy of presentation 
and conceptual insight offered by an analytical expression.  However, a 
table of numbers is much better than no solution, and it can certainly be 
plotted.   
 
Matlab offers a suite of functions for solving differential equations.  For 
example, the following file contains code to produce a plot 
indistinguishable from that of the analytical solution in Figure 5.3-1. 
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function heated_tank (tauR, beta, F1frac) 
% program to solve Eqn (5.1-11) 
% the temperature of the heated tank is disturbed by the temperatures of  
% the inlet streams and the condensing temperature of the vapor in the 
% heat exchanger bundle 
  
% INPUT variables 
% tauR      residence time in seconds 
% beta      heat transfer significance parameter 
% F1frac    fraction of flow in stream 1 
  
% OUTPUT variables 
% To        the deviation in outlet temperature is plotted 
  
% NOTE: all system variables are in deviation form 
  
% define equation parameters 
tau = tauR/(1+beta) ; % time constant in seconds 
K1 = F1frac/(1+beta) ; % stream 1 gain 
K2 = (1 - F1frac)/(1+beta) ; % stream 2 gain 
K3 = beta/(1+beta) ; % heat exchange gain 
  
% define the disturbances - first interval 
    tspan = [0, 10] ; % set the time interval 
    Toinit = 0 ; % start out at reference condition 
    T1 = 0; T2 = 0; Tc = 0; % no disturbances 
  
    % integrate the equation 
    [t,To] = ode45(@hot_tank,tspan,Toinit,[],tau,K1,K2,K3,T1,T2,Tc) ;  
  
    % plot the solution 
    plot (t,To) 
    hold on % allow plot to be updated with further plotting 
  
% define the disturbances - second interval 
    tspan = [10, 50] ; % set the time interval 
    Toinit = To(size(To,1)); % start out at most recent value 
    T1 = 10; T2 = 0; Tc = 0; % introduce step in T1 
  
    % integrate the equation 
    [t,To] = ode45(@hot_tank,tspan,Toinit,[],tau,K1,K2,K3,T1,T2,Tc) ;  
  
    % plot the solution 
    plot (t,To) 
  
% define the disturbances - third interval 
    tspan = [50, 250] ; % set the time interval 
    Toinit = To(size(To,1));  % start out at most recent value 
    T1 = 10; T2 = -5; Tc = 0; % introduce step in T2 
  
    % integrate the equation 
    [t,To] = ode45(@hot_tank,tspan,Toinit,[],tau,K1,K2,K3,T1,T2,Tc) ;  
  
    % plot the solution 
    plot (t,To) 
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    hold off % turn off the plot hold 
  
end % heated_tank 
  
% define the differential equation in a subfunction 
function dTodt = hot_tank(t,To,tau,K1,K2,K3,T1,T2,Tc) 
dTodt = (K1*T1 + K2*T2 + K3*Tc - To)/tau ; 
end 
  
 
The Matlab function ode45 is one of several routines available for 
integrating ordinary differential equations.  The output arguments are a 
column vector for time t and another for temperature deviation To.  The 
input argument @hot_tank directs ode45 to the subfunction in which 
the equation is defined.  Notice the way in which hot_tank is written: 
the equation is arranged to calculate the derivative of output variable To 
as a function of To and the input variables.   ode45 calls hot_tank 
repeatedly as it marches through the time interval denoted by the row 
vector tspan.  
 
5.6 scaled variables versus deviation variables 
We introduced deviation variables so that any non-zero variable - positive 
or negative - would be seen as a departure from the ideal reference 
condition.  Deviation variables also allowed us to define and use transfer 
functions in expressing our system models through Laplace transforms.   
 
We must, however, finally read real instruments and control real 
processes.  For these purposes, it is common to represent sensor readings, 
controller outputs, and valve-stem positions on a scale of 0 to 100.  Such 
scaled variables obscure actual values, but immediately reveal context.  
That is, a visitor to a control room would not know the significance of a 
particular tank level reading of 2.6 m, but could interpret 96% easily.  An 
everyday example of a sensor that presents a scaled variable is the fuel 
gauge in an automobile. 
 
To scale physical variable y, for example, we identify the range in which 
we expect it to vary: from ymin to ymax.  We then subtract some bias value 
from y and divide the difference by the range: 
 

%100
yy

yyy
minmax

b*

−
−

≡  (5.6-1) 

 
If the bias value yb is set to the minimum ymin, then y* varies between 0 
and 100%.  This is the typical control room presentation.  If instead the 
bias value is set to the reference value yr, then y* varies from  
 

revised 2006 Mar 31  7 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 5: Heated Tank 

%100
yy
yyy%100

yy
yy

minmax

rmax*

minmax

rmin

−
−

≤≤
−
−  (5.6-2) 

 
The scaled range is still 100% wide, but includes both positive and 
negative regions, depending on where yr lies between ymin and ymax.  Of 
course, yb may be set to any arbitrary value between the limits, but ymin 
and yr are generally the most useful. 
 
We will use primes (′) to denote deviation variables and asterisks (*) for 
scaled variables.  Unadorned variables will be presumed to be physical.  
To convert a deviation variable y′ (from an analytical solution, e.g.) for 
presentation as a scaled variable y*, the definitions are combined: 
 

 ( ) %100
yy

yyyy
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br
'
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−
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≡  (5.6-3) 

 
For example, Figure 5.6-1 shows a temperature trace expressed in 
physical, deviation, and scaled form.  Because these are linear 
transformations, the basic character of the variable is unchanged. 
 
5.7 just when I was getting accustomed to deviation variables! 
We will tend to use deviation variables for analytic solutions and 
derivations because of the convenience of zero initial conditions.  We will 
use scaled variables for our numerical work, in which each time step 
moves the solution to a new value from the “initial condition” of the 
previous step.   
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Figure 5.6-1 Expressing the variable in physical, deviation, and scaled forms 
 

CONTROL SCHEME 
 
5.8 step 1 - specify a control objective for the process 
Our control objective is to maintain the outlet temperature To at a constant 
value.  In particular, we prefer not to have offset in response to step-like 
inputs.  This means we must do something besides proportional mode. 
 
5.9 step 2 - assign variables in the dynamic system 
The controlled variable is clearly To.  The inlet temperatures T1 and T2 are 
disturbance variables.   
 
By the model, we are left with the condensing vapor temperature as the 
manipulated variable.  But what sort of valve adjusts temperature?  We 
will discuss this below when we select equipment. 
 
5.10 step 3 - PI (proportional-integral) control  
We introduced proportional control as an intuitively appealing mechanism 
- the response increases with the severity of the error.  However, 
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proportional control suffers from offset.  To counter this defect, we 
introduce a second mode of control, called integral, to complement the 
proportional behavior. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε+ε=− ∫

t

0

*

I

**
c

*
b,co

*
co dt

T
1Kxx  (5.10-1) 

 
where x*

co is the controller output and the controlled variable error is 
 

**
sp

* yy −=ε  (5.10-2) 
 
Before we discuss the integral mode, let us understand why we have 
written the controller algorithm in scaled variables.  The controller is not 
specific to a process; it merely produces a response according to the error 
it receives.  Hence it is most reasonable to build it so that error and 
response are expressed as percentages of a range; whatever y may be as a 
physical variable, in Equation (5.10-2) the scaled controlled variable y* is 
subtracted from y*

sp, which is the preferred position on the scale.  The 
resulting error ε* is processed by the controller in Equation (5.10-1) to 
generate a scaled output x*

co.  The bias output x*
co,b is the controller’s 

resting state, achieved when there has been no error.   
 
Integral mode integrates the error, so that the controller output x*

co, which 
drives the manipulated variable in the loop, increases with the persistence 
of error ε*, in addition to its severity.  The influence of the integral mode is 
set by the magnitude of the integral time TI.  In the special case of a 
constant error input to the controller, TI is the time in which the controller 
output doubles.  Thus decreasing TI strengthens the controller response.  
Very large TI disables the integral mode, leaving a proportional controller.  
The dimensionless controller gain K*

c acts on both the proportional and 
integral modes. 
 
As an example, let us test a controller in isolation, so that we supply a 
controlled variable independently, and the controller output has no effect.  
Suppose we set K*

c to 1 and TI to 1 minute.  Suppose the set point is 40% 
and the bias output 50%.  Initially, there is no error, and so the controller 
output is 50%.  Figure 5.10-1 shows the controller response to a step 
increase in the controlled variable from 40 to 60%.  Because the error 
suddenly becomes -20%, the proportional mode calls for the output to 
change by -20% (gain of +1).  Thus x*

co becomes 30%.  Over the next 
minute, there is no change in the controlled variable.  Hence the integral 
mode calls for more controller output.  In 1 minute, x*

co decreases by 
another 20% and so reaches 10%.   
 

revised 2006 Mar 31  10 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 5: Heated Tank 
At one minute, we contrive to return the controlled variable to set point, so 
that the error is again zero.  The proportional mode then ceases to call for 
output.   However, the integral mode still remembers the earlier error, and 
so the output returns to 30%, not the original 50%.  We will see later that 
when the controller is placed in a feedback loop, not isolated as we have 
used it here, the integral mode acts to eliminate offset. 
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Figure 5.10-1:  response of isolated PI controller to an input pulse 
 
For our analytical work, we will want to express the controller algorithm 
in deviation variables.  We proceed by substituting from definition (5.6-1) 
into the algorithm (5.10-1) and (5.10-2). 
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We can see that ε* represents the physical variable error ε multiplied by a 
ratio of scaling ranges.  Continuing with the controller output 
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In (5.10-4) we recognize that the controller bias is most reasonably 
thought of as its value at the reference condition.  Also, because controller 
output ranges from 0 to 100%, its “physical” value is identical to its scaled 
value.  Rewriting algorithm (5.10-1) 
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The dimensionless controller gain K*

c (the setting that would actually be 
found “on” the controller itself) is multiplied by the ratio 100% Δy-1 to 
produce a dimensional quantity Kc.  Kc converts the dimensions of the 
error ε to the % units of controller output xco.  If the error ε were expressed 
in the units of a physical variable (a liquid level, for example), Δy would 
perhaps be some number of centimeters.  If error were instead expressed 
in terms of the output of a signal transducer on the measuring instrument, 
Δy might be in volts or milliamps.   
 
The Laplace transform of controller algorithm (5.10-5) is 
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5.11 step 4 - choose set points and limits 
The heated blending tank might require an occasional change of set point, 
depending on product grade, time of year, other process conditions, etc.  
At present we are presuming that the tank is part of a continuous process, 
so that its normal operating mode is to maintain temperature at the set 
point.  Such a tank could also be used in a batch process, however.  In this 
case, the set point might be an active function of time, according to the 
recipe of the batch. 
 
Limits placed on temperature can be both high and low, depending on the 
process.  Reasons for imposing high limits are often undesirable chemical 
changes: polymerization, product degradation, fouling, side reactions.  
Both high and low limits may be imposed to avoid phase changes: boiling 
and freezing for liquids.  
 
We institute regulatory control, using, e.g., proportional-integral 
controllers, to keep controlled variables within acceptable operating limits.  
However, when there are safety limits to be enforced, regulatory control 
may be superseded by a safety control system.  Thus a reactor temperature 
may normally be regulated within operating limits, but some higher value 
will trigger an audible alarm in the control room, and some yet higher 
value will initiate emergency response or shutdown procedures that 
override normal regulatory control. 
 

EQUIPMENT 
 
5.12 the sensor in the feedback control loop 
Temperature may be measured with a variety of instruments that respond 
to temperature with an electrical signal, including thermocouples, 
thermistors, RTDs (resistance thermometry devices), etc.  In this section, 
we address both the static (calibration) and dynamic (time response) 
characteristics of temperature sensors, with reference to our heated tank 
example. 
 
Calibration of the sensor is determining the relationship between the actual 
quantity of interest (the temperature at some location in the fluid) and the 
output given by the sensor (which can be a voltage, a current in a circuit, a 
digital representation, etc., depending on the instrument).  When we speak 
of a sensor, we usually refer to both the sensing element (such as the 
bimetallic junction of a thermocouple) and signal conditioning electronics.  
It is this latter component that produces a linear relationship between 
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temperature and sensor output, even though the behavior of the sensing 
element itself may be nonlinear. 
 
Thus we relate the physical temperature To and its sensor reading Ts by 
 

soss bTKT +=  (5.12-1) 
 
In a handheld digital thermometer, the electronics are adjusted so that gain 
Ks is unity and bias bs is zero: 26ºC produces a reading of 26ºC.  In a 
control loop, however, we are more likely to have To produce an electric 
current that ranges over 4 to 20 mA, where these limits correspond to the 
expected range of temperature variation.  Current loops are a good way to 
transmit signals over the sorts of distances that separate operating 
processes from their control rooms. 
 
The sensor range is adjusted by varying Ks and bs.  For example, suppose 
that we wish to follow To over the range 50 to 100ºC.  Then  
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We express the sensor calibration in deviation variables by subtracting the 
reference state from (5.12-1).  Suppose we wish to use 75ºC as a reference 
operating condition.  At the reference, the sensor output will be 12 mA.   
 

'
os

'
s TKT =  (5.12-3) 

 
We obtain a 0 to 100% range by taking the scaled variable reference as the 
minimum temperature. 
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From (5.12-4), we see that the scaled sensor output may be defined in 
terms of the sensor reading or the controlled variable itself.  A temperature 
of 75ºC causes a sensor output of 12 mA, or 50% of range. 
 
We now consider the dynamic response of our sensor.  Suppose we place 
the sensor in fluid at 50ºC and allow it to equilibrate, so that its output is 4 
mA.  We now move the sensor suddenly to another fluid at 100ºC; how 
quickly does the sensor respond to this step input?  How long until the 
output becomes 20 mA?  Classic textbook treatments of thermocouples 

revised 2006 Mar 31  14 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 5: Heated Tank 
and thermometers indicate that the sensor response is first-order.  Hence, 
we may write the sensor transfer function as 
 

)s(T
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K)s(T '
o

s

s'
s +τ

=  (5.12-5) 

 
In (5.12-5) Ks is the sensor gain that was determined by calibration in 
(5.12-2) and (5.12-3).  The sensor has a time constant τs that depends on, 
e.g., the mass of the sensor element and the rate of heat transfer to the 
sensor.  It will follow a step input in T′o with the familiar first-order 
exponential trace. 
 
However, we plan to immerse the sensor in a large stirred tank.  Therefore, 
we are unlikely to encounter step changes in To.  In fact, it is often the case 
that the sensor time constant τs is small in comparison to the tank time 
constant τ, given in (5.1-7).  This implies that Ts will keep up with changes 
in To, so that we can simplify (5.12-5) to a pure gain process. 
 

)s(TK)s(T '
os

'
s =  (5.12-6) 

 
5.13 the valve in the feedback control loop 
Physically, the controller output dictates the opening of a valve that admits 
the heating fluid to the heat exchanger.  The figure shows a steam supply 
header, a line to the heat exchanger, and a steam trap at the exit, which 
delivers condensate to the condensate return header. 
 

steam supply header

condensate return

steam trap

heat exchanger 
bundle in tank

steam supply header

condensate return

steam trap

heat exchanger 
bundle in tank

 
 
Viewing the control valve as a dynamic system, we think of the valve 
converting the controller output (measured as %out) to the temperature of 
the condensing steam (measured in degrees).  This is not quite as 
farfetched as it may sound:   
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• the controller output (between 0 and 100%) specifies the position of the valve stem 
(between closed and open).   

• The valve opening varies the resistance presented to the flow.   
• Resistance relates any flow through the valve to the pressure drop required by that 

flow.   
• The pressure drop across the valve relates the steam supply pressure to the pressure at 

which the steam condenses in the heat exchanger.   
• The prevailing pressure in the heat exchanger determines the condensing temperature. 
• The condensing temperature determines the rate of heat transfer from vapor to tank. 
• The heat transfer rate determines the rate at which steam condenses to supply the 

heat.   
Thus the flow admitted by the valve is the flow that is able to condense at 
a temperature high enough to transfer that heat of condensation to the 
liquid in the tank.  In short, we open the valve to supply more heat.   
 
Let us not become lost among momentum equation, vapor pressure 
relationship, empirical flow resistance relationships, etc., which we 
invoked above.  Our purpose is to describe the action of the controller 
upon the condensing temperature, and so we need a gain (from steady-
state relationships) and dynamic description (from the rate processes).  
Will a simple first-order description be sufficient? 
 

)s(x
1s

K)s(T '
co

v

v'
c +τ

=  (5.13-1) 

 
We will address this question more thoroughly in Lesson 6.  For the 
present, while not dismissing our skepticism, we will accept (5.13-1).  
That is, we presume that over some range of operating conditions, at least, 
the change in condensing temperature is directly proportional to a change 
in controller output.  The underlined phrase is a key one: our linear (i.e., 
constant gain) model is an approximation, and part of our engineering job 
is to determine how far our model can be trusted. 
 
Regarding dynamic response, the first-order response of Tc to xco is also 
an approximation.  In Lesson 4 we used this description of our valve, and 
we saw that our second-order process combined with the valve to produce 
a third-order closed loop.  In this lesson, however, we have other topics to 
explore, so we will presume that the characteristic time τv for changing the 
condensing temperature is much smaller than the mixing tank time 
constant τ, so that  
 

)s(xK)s(T '
cov

'
c =  (5.13-2) 
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We have said, then, that we expect the dynamic response of the closed 
loop to depend primarily on the dynamic characteristics of the process, 
and very little on the characteristics of sensor (Section 5.12) and valve 
(Section 5.13). 
 
5.14 numerical controller calculations 
In Lessons 3 and 4, we have expressed controller behavior in 
mathematical terms and predicted the closed loop behavior by solving 
process and controller equations simultaneously.  We posit “step 
disturbance” and then make a plot of what the equations say.  This 
dynamic system representation is useful if it can help us manage real 
equipment.   
 
We understand that our process is actually a tank, but what does the 
controller look like?  For many years, the controller was a physical box 
that manipulated air flow with bellows and dampers; its output was an air 
pressure that positioned a valve stem.  Coughanowr and Koppel (chap.22) 
describe such mechanisms.   
 
Now, the controller is most often a program that runs on a microprocessor.  
The program input is numbers that represent physical signals from the 
sensor.  The algorithm (5.10-1) is computed numerically.  The output 
numbers are fed to a transducer that makes physical adjustments to a 
valve. 
 
Whereas our analytical solutions represent continuous connection between 
controller and process, the computer program controller samples the 
process values at intervals.  Marlin (chap.11) discusses the effect of 
sampling frequency on controller performance. 
 
A very simple controller program outline is given below: 
 
initialization 

set up arrays to hold variables 
set controller parameters (Kc*, TI) 

 
loop for automatic control 

interrogate sensor to determine controlled variable at t_now 
use comparator to determine set point and calculate error 
use controller algorithm to calculate controller output at t_now 
administer controller output to process  
update monitor plot with values at t_now 
wait for time interval Δt to pass 
set new value of t_now and return to beginning of loop 
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In this course, we will embellish this scheme with coding to simulate the 
process, as well, so that we can make numerical simulations of processes 
under control.  
 

CLOSED LOOP BEHAVIOR 
 
5.15 closed loop transfer functions 
We recall the general feedback block diagram introduced in Lesson 4.  
Here we modify it to show our two disturbance inputs, but the control 
architecture is unchanged.   
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From the diagram, our general closed loop model is  
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sp
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+
+

+
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=  (5.15-1) 

 
We apply (5.15-1) to our heated tank by inserting the particular transfer 
functions from Sections 5.2, 5.12, 5.13, and 5.14.   Thus the disturbance 
transfer function is 
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2
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o
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=  (5.15-2) 

 
(and similarly for disturbance T2) and the set point transfer function is 
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Adding integral control to a first order process has resulted in a closed 
loop with second-order dynamics. 
 
5.16 closed-loop behavior - set point step response 
Responses to disturbance inputs and set point changes will depend on the 
poles of (5.15-3).  These are 
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21  (5.16-1) 

 
We observe that the poles could be complex, so that the closed loop 
response could be oscillatory.  The tendency toward a negative square 
root, and thus oscillation, is exacerbated by reducing the integral time TI. 
We also observe that the real part of the poles is negative, indicating a 
stable system.   
 
We illustrate set point step response for real poles, where the set point is 
changed by magnitude ΔT: 
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The response is written in terms of poles s1 and s2.  Because they are 
negative, the two exponential terms decay in time, leaving the long-term 
change in set point as ΔT.  Thus we requested that the tank temperature 
change by ΔT, and the tank temperature changed by ΔT.  There is no 
offset - this is the contribution of the integral mode of control. 
 
5.17 second order systems 
In Lesson 4, we described the two tanks in series as an overdamped 
second-order system; now our heated tank with integral-mode control is 
also second order, but perhaps not overdamped.  We defer further 
exploration of our closed loop behavior until we learn more about the 
properties of second-order systems.  Thus we consider   
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0
dt
dy)0(y

dt
dxM)t(Kx)t(y

dt
dy

dt
yd

0t

2

2

==

+=+β+α

=

 (5.17-1) 

 
As before, we will assume that all initial conditions on response variable 
y(t) are zero, so that the system is initially at steady state, and will be 
driven only by disturbance x(t).  Parameter K has dimensions of y divided 
by x; it is the steady-state gain.  Parameter M measures the sensitivity of 
the system to the rate of change of the disturbance x(t); it has the 
dimensions of K multiplied by time.  Both K and M may be positive or 
negative, as may α and β. 
 
We solve (5.17-1) by Laplace transform.   
 

1ss
KMs

)s(x
)s(y

2 +β+α
+

=  (5.17-2) 

 
The behavior of the solution depends fundamentally on the poles of (5.17-
2).  From the properties of the quadratic equation we recall that the poles 
are real for  
 

4

2β
<α  (5.17-3) 

 
A map relating system stability to coefficients α and β is given in Figure 
5.17-1.   
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Figure 5.17-1.  Second-order system stability related to equation coefficients  
 
With real poles, it is convenient to factor the denominator, and thus 
express the second-order system in terms of two first-order systems in 
which the characteristic times τ1 and τ2 may be positive or negative.   
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We compare side-by-side second-order and first-order systems:   
 

Table 5.17-1.  Second-order system (τ1, τ2 form) – real poles 
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Zeroes 

M
Ks −

=  none 

 
The system will be stable if both τ1 and τ2 are positive, as they were for the 
mixing tanks of Lesson 4.  A second-order step response is  
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When α, the coefficient of the second derivative, is positive (right-hand-
side of Figure 5.17-1), it is customary to express the second-order system 
in an alternative way: 
 

Table 5.17-2.  Second-order system (τ, ξ form) – complex poles 
 second-order first-order 
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Relationships between the characteristic times τ1 and τ2 and the alternative 
parameters τ and ξ are  
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1 2 2τ + τ = τξ  (5.17-10) 
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2
1 2 2τ − τ = τ ξ −1  (5.17-11) 

 
As in the first-order system, τ has the dimension of time and represents a 
characteristic time of the system.  We will take it to be positive; 
dimensionless ξ in the second-order system, however, we will allow to be 
positive or negative.  Parameter ξ is called the damping coefficient, and 
the character of the response depends markedly on its value, as we will 
explore in the next few sections.  
 
5.18 overdamped systems: ξ > 1 
The poles are real, negative, and unequal.  We have seen such a system in 
Lesson 4, a system of unequal tanks in series.  The overdamped response 
to an input step of magnitude A is  
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Figure 5.18-1 shows step responses for various ξ, with M = 0.  In contrast 
to the first-order response, the trace has a sigmoid shape: a slow start and 
an inflection point.  Larger ξ make the response more sluggish. 
 
5.19 critically damped systems: ξ = 1 
For this special condition, the poles are real, negative, and equal.  This is 
the case for two identical tanks in series.  The step response is 
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Figure 5.18-1.  Step response for overdamped second-order system with M = 0. 
 
5.20 underdamped systems: ξ < 1 
The poles are complex conjugates, and the system will oscillate even for a 
non-periodic disturbance.  The overdamped response (5.18-1) may be 
modified by substituting  
 

( ) 222 1j11 ξ−=ξ−−=−ξ  (5.20-1) 
 
and using Euler’s relation to find 
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or equivalently 
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 (5.20-3) 
 
5.21 unstable systems: ξ < 0 
When the damping factor is less than zero, the exponential terms in (5.20-
2) and (5.20-3) increase with time, and the system is unstable to 
disturbances. 
 
5.22 inverse responses 
When the disturbance rate-of-change factor M is non-zero, and of opposite 
sign to the gain K, the system can show an inverse response; that it, the 
initial response of the system is opposite to its ultimate direction.  Figure 
5.22-1 shows a second-order response that initially is negative, but 
ultimately oscillates around a positive change.  The usual textbook 
example is that of level control in a boiler – adding water will initially 
lower the liquid level, as measured by the sensor, because bubbling is 
suppressed.  Such inverse responses present challenges to controllers, 
because they start off by making the problem worse. 
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Figure 5.22-1.  Second-order system; inverse response. 
 
5.23 general map for second order 
Figure 5.23-1 relates the qualitative behavior of a second-order system to 
its damping coefficient and MK-1τ-1, a group that is the reciprocal of the 
product of the time constant and the transfer function zero.  The major 
divisions of behavior correspond to the value of ξ, but various other 
features depend on this other group. 
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Figure 5.23-1.  Map relating character of step response to model parameters 
 
5.24 Measures that characterize the underdamped step response 
Oscillatory responses are common.  We have focused on second-order as a 
type for an oscillatory system: we have derived equations and inferred 
behavior.  However, much process control work is conducted in the 
opposite direction: we observe oscillatory sensor readings, and we must 
try to infer a workable system model, as well as diagnose faults. 
 
Practitioners use several measures to characterize an observed response 
(Coughanowr and Koppel, 1965).  For the particular case of the 2nd order 
system, we can supplement these definitions with equations, but for an 
unknown system we can only compute the measures from recorded data.  
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Figure 5.24-1.  Oscillatory response to step input. 
 
overshoot – response exceeds the ultimate value; equal to A/B 
 

21eovershoot ξ−
πξ−

=  
 
decay ratio – ratio of successive peaks, equal to C/A 
 

21
2

2 eovershoot  ratiodecay ξ−
πξ−

==  
 
rise time – time to first reach the ultimate value 
 
response time – time until response remains within ±5% of ultimate value 
 
period – time between peaks, or between alternate crossings of the 
ultimate value. 
 

21
22

f
1p

ξ−

πτ
=⎟

⎠
⎞

⎜
⎝
⎛

ω
π

==  

 
natural period – period if there is no damping. A step disturbance will 
cause an undamped system to oscillate perpetually about its ultimate 
value.  Notice that the time constant τ is directly proportional to the 
natural period.  Notice also that damping lengthens the period. 
 
5.25 disturbance response for the heated tank 
Armed with more knowledge of second order systems, we see that 
allowing the response to be underdamped will return the controlled 
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variable to the vicinity of the set point more quickly than in an 
overdamped response.  However, if the damping coefficient becomes too 
small, the oscillation amplitude and persistence may be unacceptable.  We 
return to the disturbance transfer function in (5.15-2) and recognize the 
characteristic time and damping coefficient. 
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From (5.25-1) we see that increasing controller gain Kc and decreasing the 
integral time TI tend to speed the loop response.  Both these adjustments 
move the controller in the direction of aggressive tuning.  The results of 
aggressive tuning are mixed on the damping coefficient - decreasing TI 
increases oscillation, but increasing Kc suppresses it.  The lower limit of ξ, 
however, is zero, so our second-order closed loop can be unstable 
(theoretically) only in the limit of zero integral time. 
 
For a step disturbance in T1 of magnitude ΔT, we find from (5.15-2), 
(5.25-1), and (5.25-2) 
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which may be inverted to give 
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Equation (5.25-4) shows that the response oscillates about, and decays to, 
zero; as with the set point response we calculated in (5.16-2), there is no 
offset in the controlled variable, in spite of the permanent change in input.  
Thus integral-mode control has improved our ability to control the outlet 
temperature. 
 
Figure 5.25-1 shows responses for several controller tunings – that is, 
several choices of parameters Kc (represented within the loop gain K) and 
TI (scaled to the process time constant).  Upon reducing the integral time, 
we reduce the amplitude of the error but undergo more oscillation.  By 
increasing the gain, we speed the decay and thus reduce both the 
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amplitude of the error and time spent away from set point: a 10 K inlet 
disturbance affects the outlet temperature by less than 1 K. 
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Figure 5.25-1.  Step response of heated tank under PI control. 
 
 
5.26 tuning the controller - measures of performance 
In Lesson 4 we tuned by keeping our distance from the stability boundary, 
but did not consider whether performance was satisfactory.  In Section 
5.25 we saw that we could adjust two controller parameters independently 
to affect the response, and that there was a trade-off between amplitude 
and oscillation.  It is time to introduce standard measures for the 
controlled variable that allow us to compare different tunings 
quantitatively. 
  
integral error (IE) -- can be deceptively small if errors are balanced 
 

∫
∞

=
0

dt)t(IE ε  (5.26-1) 

 
integral absolute error (IAE) -- accounts for any deviation 
 

∫
∞

=
0

dt)t(IAE ε  (5.26-2) 

 
integral square error (ISE) -- emphasizes large errors 
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[ ]∫
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2dt)t(ISE ε  (5.26-3) 

 
integral time absolute error (ITAE) -- emphasizes persistent errors 
 

∫
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=
0

dt)t(tITAE ε  (5.26-4) 

 
Of course, these integral error measures can be defined for scaled error ε*, 
as well.  The latter three will always increase as the controlled variable 
spends time away from the set point, so in general, smaller means better 
control.  The measures can be calculated from plant data to compare the 
results of different tunings.  They can also be used to compare the results 
of simulations.  For example, we could calculate IAE for the three traces 
in Figure 5.25-1.   
 
Furthermore, we could optimize by seeking a combination of tuning 
parameters that minimized one of the error measures.  Thus, the controller 
would be tuned by an objective performance criterion.  For response 
(5.25-4), of course, such an optimization would be expected to lead to 
infinite gain and zero integral time, because (as we determined by 
examining the poles of the transfer function in Section 5.16) the closed 
loop is stable for all tunings.  In a less idealized system, however, an 
optimum is more likely to exist. 
 
5.27 stability by Bode criterion 
We were assured of closed loop stability in Section 5.16.  Even so, we 
examine the frequency response of the loop transfer function. 
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From the table of frequency response components in Marlin (Sec.10.6) we 
find 
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The Bode plot is made for three ratios of tank time constant τ to controller 
setting TI.  For the least aggressive tuning with large TI, the response 
resembles that of a first order system, although we notice different 
behavior at low frequencies, due to the integral controller.  Decreasing the 
integral time depresses the phase angle toward a uniform -90º and 
increases the low-frequency amplitude ratio.  The amplitude ratio on the 
plot is normalized by the loop gain; high controller gain settings would 
directly increase the amplitude of low-frequency disturbances. 
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Because the phase lag never reaches -180º, the closed loop will remain 
stable.  However, we see that the integral mode contributes phase lag at 
low frequencies, as well as boosts the amplitude ratio.  Combined with 
other lags in a closed loop, integral control would tend to destabilize the 
loop. 
 
5.28 numerical simulation of closed loop response 
Numerical simulation of a first-order process under PI control was 
performed for a long pulse disturbance.  The traces appear in scaled 
variables.  The response is slightly underdamped. 
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5.29 conclusion 
Integral control has been a big help by removing offset.  However, it 
contributes phase lag to the closed loop, particularly at low frequencies, 
where it also boosts the amplitude ratio.  Having two control parameters 
has allowed us more influence over the shape of the response.    
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