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3.0 context and direction 
A particularly simple process is a tank used for blending.  Just as promised 
in Section 1.1, we will first represent the process as a dynamic system and 
explore its response to disturbances.  Then we will pose a feedback control 
scheme.  We will briefly consider the equipment required to realize this 
control.  Finally we will explore its behavior under control. 
 

DYNAMIC SYSTEM BEHAVIOR 
 
3.1 math model of a simple continuous holding tank 
Imagine a process stream comprising an important chemical species A in 
dilute liquid solution.  It might be the effluent of some process, and we 
might wish to use it to feed another process.  Suppose that the solution 
composition varies unacceptably with time.  We might moderate these 
swings by holding up a volume in a stirred tank: intuitively we expect the 
changes in the outlet composition to be more moderate than those of the 
feed stream. 
 

F, CAi

F, CAo

volume V

F, CAi

F, CAo

volume V  
 
Our concern is the time-varying behavior of the process, so we should 
treat our process as a dynamic system.  To describe the system, we begin 
by writing a component material balance over the solute. 
 

AoAiAo FCFCVC
dt
d

−=  (3.1-1) 

 
In writing (3.1-1) we have recognized that the tank operates in overflow: 
the volume is constant, so that changes in the inlet flow are quickly 
duplicated in the outlet flow.  Hence both streams are written in terms of a 
single volumetric flow F.  Furthermore, for now we will regard the flow as 
constant in time. 
 
Balance (3.1-1) also represents the concentration of the outlet stream, CAo, 
as the same as the average concentration in the tank.  That is, the tank is a 
perfect mixer: the inlet stream is quickly dispersed throughout the tank 
volume.  Putting (3.1-1) into standard form,  
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AiAo
Ao CC

dt
dC

F
V

=+  (3.1-2) 

 
we identify a first-order dynamic system describing the response of the 
outlet concentration CAo to disturbances in the inlet concentration CAi.  
The speed of response depends on the time constant, which is equal to the 
ratio of tank volume and volumetric flow.   Although both of these 
quantities influence the dynamic behavior of the system, they do so as a 
ratio.  Hence a small tank and large tank may respond at the same rate, if 
their flow rates are suitably scaled.   
 
System (3.1-2) has a gain equal to 1.  This means that a sustained 
disturbance in the inlet concentration is ultimately communicated fully to 
the outlet. 
 
Before solving (3.1-2) we specify a reference condition: we prefer that CAo 
be at a particular value CAo,r.  For steady operation in the desired state, 
there is no accumulation of solute in the tank. 
 

 r,Aor,Ai
r

Ao CC0
dt

dC
F
V

−==  (3.1-3) 

 
Thus, as expected, steady outlet conditions require a steady inlet at the 
same concentration; call it CA,r.  Let us take this reference condition as an 
initial condition in solving (3.1-2).  The solution is 
 

dt)t(CeeeC)t(C Ai
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+=  (3.1-4) 

 
where the time constant is 
 

F
V

=τ  (3.1-5) 

 
Equation (3.1-4) describes how outlet concentration CAo varies as CAi 
changes in time.  In the next few sections we explore the transient 
behavior predicted by (3.1-4). 
 
3.2 response of system to steady input 
Suppose inlet concentration remains steady at CA,r.  Then from (3.1-4) 
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Equation (3.2-1) merely confirms that the system remains steady if not 
disturbed. 
 
3.3 leaning on the system - response to step disturbance 
Step functions typify disturbances in which an input variable moves 
relatively rapidly to some new value and remains there.  Suppose that 
input CAi is initially at the reference value CA,r and changes at time t1 to 
value CA1.  Until t1 the outlet concentration is given by (3.2-1).  From the 
step at t1, the outlet concentration begins to respond. 
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In Figure 3.3-1, CA,r = 1 and CA1 = 0.8 in arbitrary units; t1 has been set 
equal to τ.  At sufficiently long time, the initial condition has no influence 
and the outlet concentration becomes equal to the new inlet concentration.  
After time equal to three time constants has elapsed, the response is about 
95% complete – this is typical of first-order systems.   
 
In Section 3.1, we suggested that the tank would mitigate the effect of 
changes in the inlet composition.  Here we see that the tank will not 
eliminate a step disturbance, but it does soften its arrival. 
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Figure 3.3-1  first-order response to step disturbance 

 
3.4 kicking the system - response to pulse disturbance 
Pulse functions typify disturbances in which an input variable moves 
relatively rapidly to some new value and subsequently returns to normal.  
Suppose that CAi changes to CA1 at time t1 and returns to CA,r at t2.  Then, 
drawing on (3.2-1) and (3.3-1), 
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In Figure 3.4-1, CA,r = 0.6 and CA1 = 1 in arbitrary units; t1 has been set 
equal to τ and t2 to 2.5τ.  We see that the tank has softened the pulse and 
reduced its peak value.  A pulse is a sequence of two counteracting step 
changes.  If the pulse duration is long (compared to the time constant τ), 
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the system can complete the first step response before being disturbed by 
the second.   
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Figure 3.4-1  first-order response to pulse disturbance 

 
3.5 shaking the system - response to sine disturbance 
Sine functions typify disturbances that oscillate.  Suppose the inlet 
concentration varies around the reference value with amplitude A and 
frequency ω, which has dimensions of radians per time. 
 

( )tsinACC r,AAi ω+=  (3.5-1) 
 
From (3.1-4), 
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Solution (3.5-2) comprises the mean value CA,r, a term that decays with 
time, and a continuing oscillation term.  Thus, the long-term system 
response to the sine input is to oscillate at the same frequency ω.  Notice, 
however, that the amplitude of the output oscillation is diminished by the 
square-root term in the denominator.  Notice further that the outlet 
oscillation lags the input by a phase angle tan-1(-ωτ). 
 
In Figure 3.5-1, CA,r = 0.8 and A = 0.5 in arbitrary units; ωτ has been set 
equal to 2.5 radians, and τ to 1 in arbitrary units.  The decaying portion of 
the solution makes a negligible contribution after the first cycle.  The 
phase lag and reduced amplitude of the solution are evident; our tank has 
mitigated the inlet disturbance. 
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Figure 3.5-1  first-order response to sine disturbance 
 
3.6 frequency response and the Bode plot 
The long-term response to a sine input is the most important part of the 
solution; we call it the frequency response of the system.  We will 
examine the frequency response for an abstract first order system.  
(Because we wish to focus on the oscillatory response, we will write (3.6-
1) so that x and y vary about zero.  The effect of a non-zero bias term can 
be seen in (3.5-1) and (3.5-2).)    
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The frequency response is a sine function, characterized by an amplitude, 
frequency, and phase angle.  The amplitude and phase angle depend on 
system properties (τ and K) and characteristics of the disturbance input (ω 
and A).  It is convenient to show the frequency dependence on a Bode 
plot, Figure 3.6-1.   
 
The Bode plot abscissa is ω in radians per time unit; the scale is 
logarithmic.  The frequency may be normalized by multiplying by the 
system time constant.  Thus plotting ω is good for a particular system; 
plotting ωτ is good for systems in general.   
 
The upper ordinate is the amplitude ratio, also on logarithmic scale.  RA is 
often normalized by dividing by the system gain K.  The lower ordinate is 
the phase angle, in degrees on a linear scale.   
 
In Figure 3.6-1, the coordinates have been normalized to depict first-order 
systems in general; the particular point represents conditions in the 
example of Section 3.5. 
 
For a first order system, the normalized amplitude ratio decreases from 1 
to 0 as frequency increases.  Similarly, the phase lag decreases from 0 to 
-90º.  Both these measures indicate that the system can follow slow inputs 
faithfully, but cannot keep up at high frequencies.   
 
Another way to think about it is to view the system as a low-pass filter: 
variations in the input signal are softened in the output, particularly for 
high frequencies. 
 
The slope of the amplitude ratio plot approaches zero at low frequency; 
the high frequency slope approaches -1.  These two asymptotes intersect at 
the corner frequency, the reciprocal of the system time constant.  At the 
corner frequency, the phase lag is -45º. 
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Figure 3.6-1:  Bode plot for first-order system 

 
3.7 stability of a system 
If we disturb our system, will it return to good operation, or will it get out 
of hand?  This is asking whether the system is stable.  We define stability 
as "bounded output for a bounded input".  That means that  

• a ramp disturbance is not fair – even stable systems can get into 
trouble if the input keeps rising.   

• a stable system should handle a step change in input, ultimately 
coming to some new steady state.  (We must be realistic, however.  
If the system is so sensitive that a small input step leads to an 
unacceptably high, though steady, output, we might declare it 
unstable for practical purposes.) 
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• it should also handle a sine input; here the result is in general not 
steady state, because the output may oscillate.  (Thus we 
distinguish between 'steady state' and 'long-term stability'.) 

 
The solutions for the typical bounded step, pulse, and sine disturbances, 
given in Sections 3.3 through 3.5, show no terms that grow with time, so 
long as the time constant τ is a positive value.  For these categories of 
bounded input, at least, a first-order system appears to be stable.  We will 
need to examine stability again when we introduce automatic control to 
our process. 
 
3.8 concentration control in a blending tank 
In Section 3.1 we described how variations in stream composition could 
be moderated by passing the stream through a larger volume - a holding 
tank.  Let us be more ambitious and seek to control the outlet composition: 
we add a small inlet stream Fc of concentrated solution to the tank.  This 
will allow us to adjust the composition in response to disturbances. 
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Our analysis begins as in Section 3.1 with a component material balance. 
 

( ) AocAccAiAo CFFCFFCVC
dt
d

+−+=  (3.8-1) 

 
As before, we place (3.8-1) in standard form (response variable on the left 
with a coefficient of +1). 
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Notice that our equation coefficients each contain the input variable Fc.  
Notice, as well, that for dilute CAo and concentrated CAc stream Fc 
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(however it may vary) will not be very large in comparison to the main 
flow F.  If this is the case, we may be justified in making an engineering 
approximation: neglecting the ratio Fc/F in comparison to 1.  Thus 
 

c
Ac

AiAo
Ao F

F
CCC

dt
dC

F
V

+=+  (3.8-3) 

 
Now we have a linear first-order system.  Comparison with (3.1-2) shows 
the same time constant V/F and the same unity gain for inlet concentration 
disturbances.  There is a new input Fc, whose influence on CAo (i.e., gain) 
increases with high concentration CAc and decreases with large 
throughflow F. 
 
3.9 use of deviation variables in solving equations 
In process control applications, we usually have some desired operating 
condition.  We now write system model (3.8-3) at the target steady state.  
All variables are at reference values, denoted by subscript r. 
 

 r,c
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r,Air,Ao F
F

CCC +=  (3.9-1) 

 
We recognize that deviations from these reference conditions represent 
errors to be corrected.  Hence we recast our system description (3.8-3) in 
terms of deviation variables; we do this by subtracting (3.9-1) from (3.8-
3). 
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 (3.9-2) 

 
where we indicate a deviation variable by a prime superscript.  The target 
condition of a deviation variable is zero, indicating that the process is 
operating at desired conditions.  Using deviation variables  
 

• makes conceptual sense for process control because they indicate 
deviations from desired states  

• makes the mathematical descriptions simpler  
 
Thus we shall use deviation variables for derivations and modeling.  For 
doing process control (computing valve positions, e.g.) we will return to 
the physical variables.  We can recover the physical variable by adding its 
deviation variable to its reference value.  For example, 
 

)t(CC)t(C '
Aor,AoAo +=  (3.9-3) 
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where we emphasize the variables that are time-varying. 
 
3.10 integration from zero initial conditions 
As a rule, we will presume that our systems are initially at the reference 
condition.  That is, the initial conditions for our differential equations are 
zero.  Integrating (3.9-2) we find 
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Equation (3.10-1) shows how the outlet composition deviates from its 
desired value CAo,r under disturbances to inlet composition CAi and the 
flow rate of the concentrated makeup stream Fc, where both of these are 
also expressed as deviations from reference values.  Equation (3.10-1) is 
analogous to (3.1-4) for the simpler holding tank. 
 
3.11 response to step changes 
Proceeding as in Section 3.3, we presume a step in inlet composition of 
ΔCAi at time t1 and of ΔFc in makeup flow at time t2. 
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CAo′ exhibits a first-order response to each of these step inputs. 
 
Example: try these numbers: 

V = 6 m3 t1 = 0 s 
F =  0.02 m3 s-1 ΔCAi = 1 kg m-3 
Fcs = 10-4 m3 s-1 t2 = 120 s 
CAis = 8 kg m-3 ΔFc = -5×10-5 m3 s-1 
CAos = 10 kg m-3  
CAc = 400 kg m-3  

 
First, verify the steady-state material balance (3.9-1) for the desired 
conditions: 
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(Notice that the exact steady-state balance, derived from (3.8-2), is 
satisfied to within 1%, so that our approximation in deriving (3.8-3) 
appears to be reasonable.)  The time constant for our process is 
 

s300m
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Substituting values into (3.11-1) we obtain 
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where t must be computed with units of seconds.  In Figure 3.11-1, we can 
see that the reduction in make-up flow at 120 s compensates for the earlier 
increase in inlet composition.  Now we are ready to consider control. 
 

CONTROL SCHEME 
 
3.12 developing a control scheme for the blending tank 
A control scheme is the plan by which we intend to control a process.  A 
control scheme requires: 
 

1) specifying control objectives, consistent with the overall objectives 
of safety for people and equipment, environmental protection, 
product quality, and economy 

2) specifying the control architecture, in which various of the system 
variables are assigned to roles of controlled, disturbance, and 
manipulated variables, and their relationships specified 

3) choosing a controller algorithm 
4) specifying set points and limits 

 
3.13 step 1 - specify a control objective for the process 
Our control objective is to maintain the outlet composition at a constant 
value.  Insofar as the process has been described, this seems consistent 
with the overall objectives. 
 
3.14 step 2 - assign variables in the dynamic system 
The controlled variable is clearly the outlet composition.  The inlet 
composition is a disturbance variable: we have no influence over it, but 
must react to its effects on the controlled variable.  We do have available a 
variable that we can manipulate: the make-up flow rate.   
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We specify feedback control as our control architecture: departure of the 
controlled variable from the set point will trigger corrective action in the 
manipulated variable.  Said another way, we manipulate make-up flow to 
control outlet composition. 
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Figure 3.11-1  outlet composition response to opposing step inputs 

 
3.15 step 3 - introduce proportional control for our process 
The controller algorithm dictates how the manipulated variable is to be 
adjusted in response to deviations between the controlled variable and the 
set point.  We will introduce a simple and plausible algorithm, called 
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proportional control.  This algorithm specifies that the magnitude of the 
manipulation is directly proportional to the magnitude of the deviation. 
 

( )Aosetpt,Aogainbiasc CCKFF −=−  (3.15-1) 
 
In algorithm (3.15-1) the controlled variable CAo is subtracted from the set 
point.  (Subtracting from the set point, rather than the reverse, is a 
convention.)  Any non-zero result is an error.  The error is multiplied by 
the controller gain Kgain.  Their product determines the degree to which 
manipulated variable Fc differs from Fbias, its value when there is no error.  
The gain may be adjusted in magnitude to vary the aggressiveness of the 
controller.  Large errors and high gain lead to large changes in Fc. 
 
We must consider the direction of the controller, as well as its strength: 
should the outlet composition exceed the set point, the make-up flow must 
be reduced.  Algorithm (3.15-1) satisfies this requirement if controller gain 
Kc is positive. 
 
3.16 step 4 - choose set points and limits 
The set point is the target operating value.  For many continuous processes 
this target rarely varies.  In our blending tank example, we may always 
desire a particular outlet concentration.  In other cases, such as a process 
that makes several grades of product, the set point might be varied from 
time to time.  In batch processes, moreover, the set point can show 
frequent variation because it provides the desired trajectory for the time-
varying process conditions. 
 
Several sorts of limits must be considered in control engineering: 
 
safety limits: if a variable exceeds these limits, a hazard exists.  Examples 
are explosive composition limits on mixtures, bursting pressure in a 
vessel, temperatures that trigger runaway reactions.   
 
These limits are determined by the process, and the control scheme must 
be designed to abide by them. 
 
expected variation:  it is necessary to estimate how much variation might 
be expected in a disturbance variable.  This estimate is the basis for 
specifying the strength of the manipulated variable response.  In Section 
3.11, our system model (based on the material balance) showed us how 
much variation in make-up flow, at specified make-up composition, was 
required to compensate for a particular change in the inlet composition.   
 
These limits are determined by the process and its environment.  No 
amount of controller design can compensate for a manipulated variable 
that is unequal to the disturbance task. 
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tolerable variation: ideally the controlled variable would never deviate 
from the set point.  This, of course, is unrealistic; in practice some 
variation must be tolerated, because   
• obtaining enough information on the process and disturbance is 

usually impossible, and in any case too expensive.   
• exerting sufficient manipulative strength to suppress variation in the 

control variable might be expected to require large variations in the 
manipulated variable, which can cause problems elsewhere in the 
process. 

 
Tolerable limits are determined by the safety limits, above, and then an 
economic analysis that considers the cost of variation and the cost of 
control.  We do not expect to achieve perfect control, but good control is 
usually worth spending some money. 
 
For the blending tank example, then, we select: 
• set point: CAo,setpt = 10 kg m-3.  This would be determined by the user 

of the stream. 
• safety limits: none apparent from problem statement 
• expected variation: ±1 kg m-3; such a specification might come from 

historical data or engineering calculations.  The steady-state material 
balance (e.g., (3.11-1) applied at long times) shows that the make-up 
flow must vary at least ±5×10-5 m3 s-1 to compensate such 
disturbances.  However, might we need more capability during the 
course of a transient?? 

• tolerable variation: ±0.1 kg m-3.  This specification depends on the 
user of the stream. 

 
 

EQUIPMENT 
 
3.17 type of equipment needed for process control 
Figure 3.17-1 shows our process and control scheme as two 
communicating systems.  The system representing the process has two 
inputs and one output.  Of these only one is a material stream; however, 
we recall that systems communicate with their environment (and other 
systems) through signals, and in the blending process the outlet 
composition responds to the inlet composition and make-up flow rate.   
 
The system representing feedback control describes the needed operations, 
but we have not described the nature of the equipment – could there be a 
single device that takes in a composition measurement and puts out a 
flow?  Can we find a vendor to make such a device to execute controller 
algorithm (3.15-1)?  Can we have the gain knob calibrated in units 
consistent with those we want to use for flow and composition?   
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Figure 3.17-1:  Closed loop feedback control of process 

 
We will address these questions in later lessons.  For now, we assume that 
there will be several distinct pieces of equipment involved, and that they 
work together so that  
 

( )Aosetpt,Aocbiasc CCKFF −=−  (3.17-1) 
  
where we use the conventional symbol Kc for controller gain.  In the case 
of (3.17-1), we notice that the dimensions of Kc are volume2 mass-1 time-1. 
 
In good time we will improve our description of both equipment and 
controller algorithms.  When we do, however, we will find that the overall 
concept of feedback control is the same as presented in Figure 3.17-1: the 
controlled variable is measured, decisions are made, and the manipulated 
variable is adjusted to improve the controlled variable.   
 

CLOSED LOOP BEHAVIOR 
 
3.18 closing the loop - feedback control of the blending process 
Our next task will be to combine our controller algorithm with our system 
model to describe how the process behaves under control.  We begin by 
expressing algorithm (3.17-1) in deviation variables.  At the reference 
condition, all variables are at steady values, indicated by subscript r. 
 

( )r,Aor,setpt,Aocbiasr,c CCKFF −=−  (3.18-1) 
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Presumably the reference condition has no error, so that the set point is 
simply the target outlet composition CAo,r.  Thus we learn that Fbias, the 
zero-error manipulated variable value, is simply Fc,r.  Subtracting (3.18-1) 
from (3.17-1), we find 
 

( )
( )'

Ao
'

setpt,Aoc
'
c

r,AoAor,setpt,Aosetpt,Aocbiasbiasr,cc

CCKF

CCCCKFFFF

−=

+−−=+−−
 (3.18-2) 

 
If the set point remains at CAo,r, the deviation variable C′Ao,setpt will be 
identically zero. 
 
We replace the manipulated variable in system model (3.9-2) with 
controller algorithm (3.18-2) to find  
 

( '
Ao

'
setpt,Aoc

Ac'
Ai

'
Ao

'
Ao CCK

F
CCC

d
)

t
dC

−+=+τ  (3.18-3) 

 
On expressing (3.18-3) in standard form, we arrive at a first-order 
dynamic system model representing the process under proportional-mode 
feedback control, as shown in Figure 3.17-1. 
 

'
setpt,Ao

cAc

cAc

'
Ai

cAc

'
Ao

'
Ao

cAc
C

F
KC1

F
KC

C

F
KC1

1C
dt

dC

F
KC1 +

+
+

=+
+

τ  (3.18-4) 

 
Equation (3.18-4) describes a dynamic system (process and controller in 
closed loop) in which the outlet composition varies with two inputs: the 
inlet composition and the set point.  Figure 3.18-1 compares (3.18-4) with 
the process model (3.9-2) alone; we see that  
• the closed loop responds more quickly because the closed loop time 

constant is less than process time constant τ.   
• the closed loop has a smaller dependence on disturbance C′Ai because 

the gain is less than unity.  Both time constant and gain are reduced by 
increasing the controller gain Kc. 

 
3.19 integration from zero initial conditions 
In Section 3.10, we integrated our open-loop system model to find how 
C′Ao responded to inputs C′Ai and F′c.  Now we integrate closed-loop 
system model (3.18-4) in a similar manner. 
 

dtCeKedtCeKeC '
setpt,Ao

t

0

t

SP
CL

t

'
Ai

t

0

t

CL
CL

t

'
Ao

CL
CL

CL
CL

∫∫ τ
τ−

τ
τ−

τ
+

τ
=  (3.19-1) 
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where 
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Figure 3.18-1:  Comparing open- and closed-loop system descriptions 

 
3.20 closed-loop response to pulse disturbance 
We test our controlled process by a pulse ΔC in the inlet composition that 
begins at time t1 and ends at t2.  We find 
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Figure 3.20-1 shows both uncontrolled (open-loop) and controlled (closed-
loop) process responses for the same operating conditions used in Section 
3.11.  We see the faster response and smaller error that we expected when 
we examined (3.18-4) in Section 3.18.  These characteristics improve as 
gain increases.  Increasing gain also elicits stronger manipulated variable 
action.  Thus automatic control appears to have improved matters. 
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Figure 3.20-1: Response to pulse input under proportional control. 

 
3.21 closed-loop response to step disturbance - the offset phenomenon 
Integrating (3.19-1) for a step of ΔC, we obtain 
 

⎟
⎠
⎞

⎜
⎝
⎛ −Δ= τ

−
CL

t

CL
'
Ao e1KCC  (3.21-1) 
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Figure 3.21-1 shows open- and closed-loop step responses.  Notice that for 
no case does the controlled variable return to the set point!  This is the 
phenomenon of offset, which is a characteristic of the proportional control 
algorithm responding to step inputs.   
 

CL

'
Ao

setpt,AoAo

KC         
)(C         

C)(C          
pointset  - response longterm  offset

Δ=
∞=

−∞=
=

 (3.21-1) 

 
Recalling (3.19-2), increasing the controller gain decreases the closed-loop 
disturbance gain KCL, and thus decreases the offset. 
 
We find that offset is implicit in the proportional control definition 
(3.15-1).  An off-normal disturbance variable requires the manipulated 
variable to change to compensate.  For the manipulated variable to differ 
from its bias value, (3.15-1) shows that the error must be non-zero.  Hence 
some error must persist so that the manipulated variable can persist in 
compensating for a persistent disturbance. 
 
3.22 response to set point changes 
We apply (3.19-1) to a change in set point. 
 

⎟
⎠
⎞

⎜
⎝
⎛ −Δ= τ

−
CL

t

SPsetpt,Ao
'
Ao e1KCC  (3.22-1) 

 
We recall from (3.19-2) that KSP is less than 1.  Thus, the outlet 
composition follows the change, but cannot reach the new set point.  This 
is again offset due to proportional-mode control.  Increasing controller 
gain increases KSP and reduces the offset. 
 
3.23 tuning the controller 
Choosing values of the adjustable controller parameters, such as gain, for 
good control is called tuning the controller.  So far, our experience has 
been that increasing the gain decreases offset - then should we not set the 
gain as high as possible?   
 
We should not jump to that conclusion.  In general, tuning positions the 
closed-loop response between two extremes.  At one extreme is no control 
at all, gain set at zero (open-loop).  At the other is too much attempted 
control, driving the system to instability.  In the former case, the 
controlled variable wanders where it will; in the latter case, over-
aggressive manipulation produces severe variations in the controlled 
variable, worse than no control at all.  Tuning seeks a middle ground in 
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which control reduces variability in the controlled variable.  This means 
both rejection of disturbances and fidelity to set point changes. 
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Figure 3.21-1: proportional control step response, showing offset 
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Recall Figures 3.20-1 and 3.21-1.  In these, we achieved our ±0.1 kg m-3 
specification on outlet concentration at a gain between 0.0003 and 0.0009 
m6 kg-1 s-1.   Hence we will use our model, which predicts the response to 
disturbances, to guide us in tuning.  In operation, we would use the 
predicted value as a starting point, and make further adjustments, if 
required, in the field. 
 
3.24 stability of the closed-loop system 
In Section 3.23, we said that tuning positions the controlled process 
between non-control and instability.  We must therefore inquire into the 
stability limit.  Because (3.19-1) describes the closed-loop system, we 
should be able to seek the conditions under which it becomes unstable.   
We invoke the notion of stability to bounded inputs that we introduced in 
Section 3.7, and we come to the same conclusion we reached there: a first-
order system is stable to all bounded inputs, and we have not changed the 
order of the system by adding feedback control in the proportional mode. 
 
So “theoretically” we can increase gain as much as we like with no 
possibility of reaching instability.  Equation (3.19-2) shows that in the 
limit of infinite controller gain, the response will be instantaneous (τCL = 
0), disturbances will be completely rejected (KCL = 0) and set points will 
be faithfully tracked (KSP = 1). 
 
Practically, we will not be surprised to find that this is NOT true.  No 
automatically-controlled chemical process will really be first order.  
Increasing the gain in real processes will ultimately lead to instability.  We 
will explore this point further in future lessons. 
 
3.25 conclusion 
We have done quite a lot: 
• used conservation equations to derive a dynamic system model of a 

process 
• identified three characteristic disturbances to test system responses 
• introduced the frequency response and Bode plots 
• discussed how to formulate a control scheme 
• introduced proportional-mode control and explored its behavior 
• compared open- and closed-loop response 
• learned how tuning fits between limits of no control and instability 
 
We will elaborate each of these topics in later lessons. 
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