Supplementary Notes for Chapter 5 The Calculus of Thermodynamics

Objectives of Chapter 5

1. to understand the framework of the Fundamental Equation - including the geometric and mathematical relationships among derived properties $(U, S, H, A$, and G)
2. to describe methods of derivative manipulation that are useful for computing changes in derived property values using measurable, experimentally accessible properties like T, P, V, N_{i}, x_{i}, and ρ.
3. to introduce the use of Legendre Transformations as a way of alternating the Fundamental Equation without losing information content

Starting with the combined $1^{\text {st }}$ and $2^{\text {nd }}$ Laws and Euler's theorem we can generate the Fundamental Equation:

Recall for the combined $1^{\text {st }}$ and $2^{\text {nd }}$ Laws:

- Reversible, quasi-static
- Only PdV work
- Simple, open system (no KE, PE effects)
- For an n component system

$$
\begin{aligned}
& d \underline{U}=T d \underline{S}-P d \underline{V}+\sum_{i=1}^{n}(H-T S)_{i} d N_{i} \\
& d \underline{U}=T d \underline{S}-P d \underline{V}+\sum_{i=1}^{n} \mu_{i} d N_{i}
\end{aligned}
$$

and Euler's Theorem:

- Applies to all smoothly-varying homogeneous functions f,

$$
f(a, b, \ldots, x, y, \ldots)
$$

where a, b, \ldots intensive variables are homogenous to zero order in mass and x, y, extensive variables are homogeneous to the $1^{\text {st }}$ degree in mass or moles (N).

- $d f$ is an exact differential (not path dependent) and can be integrated directly

$$
\text { if } Y=k y \text { and } X=k x \text { then }
$$

$$
f(a, b, \ldots, X, Y, \ldots)=k f(a, b, \ldots, x, y, \ldots)
$$

and

$$
x\left(\frac{\partial f}{\partial x}\right)_{a, b, \ldots, y, \ldots}+y\left(\frac{\partial f}{\partial y}\right)_{a, b, \ldots, x, . .}+\ldots=(1) f(a, b, \ldots x, y, \ldots)
$$

Fundamental Equation:

- Can be obtained via Euler integration of combined $1^{\text {st }}$ and $2^{\text {nd }}$ Laws
- Expressed in Energy (\underline{U}) or Entropy (\underline{S}) representation

$$
\underline{U}=f_{u}\left[\underline{S}, \underline{V}, N_{1}, N_{2}, \ldots, N_{n}\right]=T \underline{S}-P \underline{V}+\sum_{i=1}^{n} \mu_{i} N_{i}
$$

or

$$
\underline{S}=f_{s}\left[\underline{U}, \underline{V}, N_{1}, N_{2}, \ldots, N_{n}\right]=\frac{U}{T}+\frac{P}{T} \underline{V}-\sum_{i=1}^{n} \frac{\mu_{i}}{T} N_{i}
$$

The following section summarizes a number of useful techniques for manipulating thermodynamic derivative relationships

Consider a general function of $n+2$ variables

$$
F\left(x, y, z_{3}, \ldots, z_{n+2}\right)
$$

where $x \equiv z_{1}, y \equiv z_{2}$. Then expanding via the rules of multivariable calculus:

$$
d F=\sum_{i=1}^{n+2}\left(\frac{\partial F}{\partial z_{i}}\right) d z_{i}
$$

Now consider a process occurring at constant F with $z_{3}, . ., z_{n+2}$ all held constant. Then

$$
d F=0=\left(\frac{\partial F}{\partial x}\right)_{y, z_{3}, \ldots} d x+\left(\frac{\partial F}{\partial y}\right)_{x, z_{3}, \ldots} d y
$$

Rearranging, we get:
Triple product "x-y-z-(-1) rule" for $F(x, y)$:

$$
(\partial F / \partial x)_{y}(\partial x / \partial y)_{F}(\partial y / \partial F)_{x}=-1
$$

example: $\quad(\partial H / \partial T)_{P}(\partial T / \partial P)_{H}(\partial P / \partial H)_{T}=-1$

Add another variable to $F(x, y)$:

$$
(\partial F / \partial y)_{x}=\frac{(\partial F / \partial \phi)_{x}}{(\partial y / \partial \phi)_{x}}
$$

example: $F(x, y)=S(P, H)$ and $\phi=T$ then $\left(\frac{\partial S}{\partial H}\right)_{P}=\frac{(\partial S / \partial T)_{P}}{(\partial H / \partial T)_{P}}=\frac{C_{p} / T}{C_{p}}=1 / T$

Derivative inversion for $\boldsymbol{F}(\boldsymbol{x}, \mathrm{y})$:

$$
\begin{aligned}
(\partial F / \partial y)_{x} & =1 /(\partial y / \partial F)_{X} \\
\text { example: } \quad(\partial T / \partial S)_{P} & =1 /(\partial S / \partial T)_{P}=T / C_{p}
\end{aligned}
$$

Maxwell's reciprocity theorem:
Applies to all homogeneous functions, e.g. $F(x, y, .$.

$$
\left\lfloor\frac{\partial(\partial F / \partial x)_{y, \ldots}}{d y}\right\rfloor_{x, . .}=\left\lfloor\frac{\partial(\partial F / \partial y)_{x, \ldots}}{\partial x}\right\rfloor_{y, \ldots} \text { or } F_{x y}=F_{y x}
$$

example:

$$
\begin{gathered}
d \underline{U}=T d \underline{S}-P d \underline{V}+\sum_{i=1}^{n} \mu_{i} d N_{i} \\
(\partial T / \partial \underline{V})_{\underline{S}, N}=\underline{U}_{\underline{S} \underline{V}}=\underline{U}_{S V}=-(\partial P / \partial \underline{S})_{\underline{V}, N}=\underline{U}_{\underline{V} \underline{S}}=\underline{U}_{V S}
\end{gathered}
$$

Legendre Transforms:

$$
\left.\begin{array}{c}
\left(x_{i}, \xi_{i}\right) \\
(\underline{S}, T) \\
(\underline{V},-P) \\
\left(N_{i}, \mu_{i}\right) \\
\left(\underline{x}, F_{i}\right) \\
(\underline{a}, \sigma) \\
\text { (extensive, intensive) }
\end{array}\right\}
$$

General relationship

Conjugate coordinates

Examples

$y^{(0)}=f\left[x_{1}, \ldots, x_{m}\right] \quad$ (basis function) $\quad \underline{U}=f\left[\underline{S}, \underline{V}, N_{1}, \ldots N_{n}\right]$
$y^{(k)}=y^{(0)}-\sum_{i=1}^{k} \xi_{i} x_{i} \quad\left(k^{\text {th }}\right.$ transform $)$

$$
y^{(1)}=\underline{A}=\underline{U}-T \underline{S}
$$

or by changing variable order to

$$
\begin{gathered}
U=f\left(\underline{V}, \underline{S}, N_{1}, \ldots, N_{n}\right), \\
y^{(1)}=\underline{H}=\underline{U}+P \underline{V}
\end{gathered}
$$

$$
\begin{array}{ll}
d y^{(k)}=-\sum_{i=1}^{k} x_{i} d \xi_{i}+\sum_{i=k+1}^{m} \xi_{i} d x_{i} & d y^{(1)} \equiv d \underline{A}=-\underline{S} d T-P d \underline{V}+\sum_{i=1}^{n} \mu_{i} d N_{i} \\
\text { or } \\
d y^{(1)} \equiv d \underline{H}=T d \underline{S}+\underline{V} d P+\sum_{i=1}^{n} \mu_{i} d N_{i} \\
y^{(m)}=y^{(0)}-\sum_{i=1}^{m} \xi_{i} x_{i}=0 & \left.y^{(n+2)}=0 \quad \text { (total transform with } m=n+2\right) \\
d y^{(m)}=-\sum_{i=1}^{m} x_{i} d \xi_{i}=0 & d y^{(n+2)}=-\underline{S} d T+\underline{V} d P-\sum_{i=1}^{n} N_{i} d \mu_{i}=0 \\
& \text { (Gibbs-Duhem Equation) }
\end{array}
$$

Relationships among Partial Derivatives of Legendre Transforms

$$
\begin{array}{ll}
y_{i j}^{(k)}=y_{j i}^{(k)}=\frac{\partial^{2} y^{(k)}}{\partial x_{i} \partial x_{j}} & \text { (Maxwell relation) } \quad \xi_{i} \equiv y_{i}^{(0)}=\left(\frac{\partial y^{(0)}}{\partial x_{i}}\right)_{x_{j}[i]} \\
y_{1 i}^{(0)}=\frac{\partial^{2} y^{(0)}}{\partial x_{1} \partial x_{i}} & y_{11}^{(0)}=\frac{\partial^{2} y^{(0)}}{\partial x_{1}^{2}} \quad y_{i}^{(1)}=\left\{\begin{array}{cc}
-x_{i} & i=1 \\
\xi_{i} & i>1
\end{array}\right\} \\
{\left[\mathrm{NB}: \quad \xi_{i}=y_{i}^{(0)} \text { as well for } i>1\right]}
\end{array}
$$

Reordering and Use of Tables 5.3-5.5

Table 5.3- $2^{\text {nd }} \& 3^{\text {rd }}$ order derivatives of $\left[y_{i j}^{(1)}\right.$ and $\left.y_{i j k}^{(1)}\right]$ in terms of $y_{i i}^{(0)}$, etc
Table 5.4 - Relations between $2^{\text {nd }}$ order derivatives of $j^{\text {th }}$ Legendre transform $y_{i k}^{(j)}$ and the basis function $y_{i k}^{(0)}$

Table 5.5 - Relationships among $2^{\text {nd }}$ order derivatives of $j^{\text {th }}$ Legendre transform $y_{i k}^{(j)}$ to $(j-q)$ transform $y_{i k}^{(j-q)}$

[^0]
[^0]: \10.40\Ch5-Calc. of Thermo. Suppl. Notes

