Part II – Thermodynamic properties Properties of Pure Materials – Chapter 8

Primary objective is to evaluate changes in state in terms of primitive and measurable properties

Secondary objective is to connect molecular properties and interactions to macroscopic properties and processes

Properties of Pure Materials – Chapter 8

- Connections to the Fundamental Equation via G
- various forms for equations of state
- reference state condition for $S = S^{\circ}$ and the Third Law of Thermodynamics
- Derived property estimation U and ΔU , etc.
- Role of departure or residual functions
- Constitutive *PVTN* volumetric property models
 - ldeal gas law
 - Theorem of Corresponding States
 - Fluid behavior from the Boyle point to the triple point -
 - Zeno condition
 - Pressure and volume explicit semi-empirical EOSs Correlated experimental data
- Ideal gas state heat capacity models
 - translation kinetic theory classical
 - rotation rigid rotator -classical
 - vibration quantized using the Einstein model
- Property estimation methods
 - Molecular group contributions
 - **Corresponding States**
 - Conformal fluid theory
 - Molecular simulations

$$\underline{U} = T\underline{S} - P\underline{V} + \mu N = f(\underline{S}, \underline{V}, N)$$

$$d\underline{U} = Td\underline{S} - Pd\underline{V} + \mu \, dN$$

$$\underline{G} = \underline{U} + P\underline{V} - T\underline{S} = \underline{H} - T\underline{S} = y^{(2)} = f(T, P, N)$$

$$d\underline{G} = -\underline{S}dT + \underline{V}dP + \mu \, dN$$

$$\begin{vmatrix} C_{p} \equiv T\left(\frac{\partial S}{\partial P}\right)_{P} = \left(\frac{\partial H}{\partial P}\right)_{P} \\ \kappa_{T} \equiv -\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \\ \alpha_{P} \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \end{vmatrix}$$

Constitutive PVTN Volumetric Property Models

1. Ideal gas law PV = NRT or PV = RTZ = PV/RT = 1

- 2. Theorem of Corresponding States $Z = f(T_r, P_r, Z_c, \omega, ...)$ scaling to reduced coordinates fluids from the Boyle point at low density to the triple point at high density – the Zeno line
- 3. Cubic type EOS P = f(T,V)van der Waals $P = RT/(V-b) -a/V^2$ Redlich-Kwong (RK) Redlich- Kwong-Soave (RKS) Peng-Robinson (PR)
- 4. Virial type EOS $Z = 1 + B/V + C/V^2 + ...$ BWR Starling Martin-Hou