# 10.40 Appendix <br> Connection to Thermodynamics and Derivation of Boltzmann Distribution 

Bernhardt L. Trout

## Outline

- Cannonical ensemble
- Maximum term method
- Most probable distribution
- Ensembles continued: Canonical, Microcanonical, Grand Canonical, etc.
- Connection to thermodynamics
- Relation of thermodynamic quantities to Q


### 0.1 Canonical ensemble

In the Canonical ensemble, each system has constant $N, \underline{V}$, and $T$.
After equilibration, remove all of the systems from the bath, and put them all together:

Apply postulate 2 to the ensemble of systems, also called a supersystem.
Let $n_{j}=$ number of systems with energy $\underline{E}_{j}$. Also, $\mathcal{N}=\sum_{j} n_{j}$ and $\underline{E}_{t o t}=$ $\sum_{j} n_{j} \underline{E}_{j}$.

If we know all $\underline{E}_{j}$ 's, then the state of the entire ensemble would be well-defined.
For example, let's analyze an ensemble with 4 systems, labeled A, B, C, and D, where

$$
\begin{array}{llll}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
\underline{E}_{2} & \underline{E}_{3} & \underline{E}_{2} & \underline{E}_{1}
\end{array}
$$

Then, $\underline{E}_{t o t}=\underline{E}_{1}+2 \underline{E}_{2}+\underline{E}_{3}$
Also, the distribution of the systems, $\vec{n}=\left(n_{1}, n_{2}, n_{3}, \ldots\right)=(1,2,1)$.
But there are many different supersystems consistent with this distribution. In fact, the number of supersystems consistent with this distribution is

$$
\Omega_{t o t}(\vec{n})=\frac{\mathcal{N}!}{\prod_{j} n_{j}!}=\frac{4!}{1!2!1!}=12
$$

What is the probability of observing a given quantum state, e.g. $\underline{E}_{j}$ ? In other words, what is the fraction of systems in the ensemble in the state $\underline{E}_{j}$ ?


## (Bath at temperature $T$ )

Figure 1: Canonical ensemble

The answer is $\frac{n_{j}}{\mathcal{N}}$.
However, it may be the case that many distributions fulfill the conditions of the ensemble, $\left(N, \underline{V}, \underline{E}_{t o t}\right)$.

For example, assume that there are two:

$$
n_{1}=1, n_{2}=2, n_{3}=1 ; \Omega_{t o t}=12
$$

and

$$
n_{1}=2, n_{2}=0, n_{3}=2 ; \Omega_{t o t}=6
$$

Then the probability of observing, for example, $\underline{E}_{3}$ is $\frac{1}{4}$ in the first distribution and $\frac{1}{2}$ in the second.

The probability in the case where both distributions make up the ensemble is:

$$
p_{3}=\left(\frac{1}{4}\right) \frac{1 \times 12+2 \times 6}{12+6}=\frac{1}{3}
$$

In general,

$$
p_{j}=\left(\frac{1}{\mathcal{N}}\right) \frac{\sum_{\vec{n}} \Omega_{t o t}(\vec{n}) n_{j}(\vec{n})}{\sum_{\vec{n}} \Omega_{t o t}(\vec{n})}
$$

where the sum is over all distributions satisfying the conditions of $\left(N, \underline{V}, \underline{E}_{t o t}\right)$.
Then, for example, we could compute ensemble averages of mechanical quantities:

$$
\underline{E}=\langle\underline{E}\rangle=\sum_{j} P_{j} \underline{E}_{j}
$$



Figure 2: Canonical ensemble forming its own bath
and

$$
P=\langle P\rangle=\sum_{j} p_{j} P_{j}
$$

where $p$ is the pressure.

### 0.2 Maximum term method

Recall:

$$
p_{j}=\left(\frac{1}{\mathcal{N}}\right) \frac{\sum_{\vec{n}} \Omega_{t o t}(\vec{n}) n_{j}(\vec{n})}{\sum_{\vec{n}} \Omega_{t o t}(\vec{n})}
$$

where

$$
\Omega_{t o t}(\vec{n})=\frac{\mathcal{N}!}{\prod_{j} n_{j}!}
$$

As $\mathcal{N} \rightarrow \infty, n_{j} \rightarrow \infty$, for each $j$.
Thus, the most probable distribution becomes dominant. We can call this distribution, $\vec{n}^{*}$.

Let $n_{j}^{*}=n_{j}$ in the $\vec{n}^{*}$ distribution. Then

$$
p_{j}=\frac{1}{\mathcal{N}} \frac{\Omega_{t o t}\left(\vec{n}^{*}\right) n_{j}^{*}}{\Omega_{t o t}\left(\vec{n}^{*}\right)}=\frac{n_{j}^{*}}{\mathcal{N}}
$$

### 0.3 Most probable distribution

Which distribution gives the largest $\Omega_{t o t}$ ?
Solve via method of undetermined multipliers:
Take natural $\log$ of $\Omega_{t o t}$.

$$
\ln \left(\Omega_{t o t}(\vec{n})\right)=\ln \left(\frac{\mathcal{N}!}{\prod_{i} n_{i}!}\right)=\left(\sum_{i} n_{i}\right) \ln \left(\sum_{i} n_{i}\right)-\sum_{i} n_{i} \ln n_{i}
$$

where we have switched the index from $j$ to $i$ and used Stirling's approximation, which becomes exact as $n_{i} \rightarrow \infty$ :

$$
\ln y!\approx y \ln y-y
$$

We wish to find the set of $n_{j}$ 's, which maximize $\Omega_{t o t}(\vec{n})$ and hence $\ln \left(\Omega_{t o t}(\vec{n})\right)$ :

$$
\frac{\partial}{\partial n_{j}}\left[\ln \left(\Omega_{t o t}(\vec{n})\right)-\alpha \sum_{i} n_{i}-\beta \sum_{i} n_{i} \underline{E}_{i}=0\right], j=1,2,3, \ldots
$$

where $\alpha$ and $\beta$ are the undetermined multipliers. Carrying out the differentiation yields

$$
\ln \left(\sum_{i} n_{i}\right)-\ln n_{j}^{*}-\alpha-\beta \underline{E}_{j}=0, j=1,2,3, \ldots
$$

or

$$
n_{j}^{*}=\mathcal{N} e^{-\alpha} e^{-\beta \underline{E}_{j}}, j=1,2,3, \ldots
$$

Recalling that

$$
\mathcal{N}=\sum_{j} n_{j}^{*}
$$

yields

$$
\sum_{j} e^{-\alpha} e^{-\beta \underline{E}_{j}}=1
$$

or

$$
e^{\alpha}=\sum_{j} e^{-\beta \underline{E}_{j}}
$$

Also,

$$
\langle\underline{E}\rangle=\frac{\sum_{j} n_{j}^{*} \underline{E}_{j}}{\mathcal{N}}=\frac{\sum_{j} \mathcal{N} e^{-\alpha} e^{-\beta \underline{E}_{j}} \underline{E}_{j}}{\mathcal{N}}=\frac{\sum_{j} e^{-\beta \underline{E}_{j}} \underline{E}_{j}}{\sum_{j} e^{-\beta \underline{E}_{j}}}
$$

and

$$
p_{j}=\frac{n_{j}^{*}}{\mathcal{N}}=e^{-\alpha} e^{-\beta E_{j}}=\frac{e^{-\beta E_{j}}}{\sum_{j} e^{-\beta E_{j}}}
$$

where

$$
Q=\sum_{j} e^{-\beta \underline{E}_{j}}
$$

and, as we discussed in the last lecture, is the partition function, the normalization factor.

### 0.4 Canonical ensemble continued and connection to thermodynamics

Recall from last time, via the maximum-term method in the canonical ensemble:

$$
\langle\underline{E}\rangle=\frac{\sum_{j} n_{j}^{*} \underline{E}_{j}}{\mathcal{N}}=\frac{\sum_{j} \mathcal{N} e^{-\alpha} e^{-\beta \underline{E}_{j}} \underline{E}_{j}}{\mathcal{N}}=\frac{\sum_{j} e^{-\beta \underline{E}_{j}} \underline{E}_{j}}{\sum_{j} e^{-\beta \underline{E}_{j}}}
$$

and

$$
p_{j}=\frac{n_{j}^{*}}{\mathcal{N}}=e^{-\alpha} e^{-\beta \underline{E}_{j}}=\frac{e^{-\beta \underline{E}_{j}}}{\sum_{j} e^{-\beta \underline{E}_{j}}},
$$

where,

$$
Q=\sum_{j} e^{-\beta \underline{E}_{j}}
$$

as we discussed in the last lecture, is the partition function, the normalization factor.
In addition, as we have shown:

$$
\underline{E}=\langle\underline{E}\rangle=\sum_{j} p_{j} \underline{E}_{j}
$$

and

$$
P=\langle P\rangle=\sum_{j} p_{j} P_{j}
$$

where $P$ is the pressure.
If we differentiate the equation for $\langle\underline{E}\rangle$,

$$
\begin{gather*}
d\langle\underline{E}\rangle=\sum_{j} \underline{E}_{j} d p_{j}+\sum_{j} p_{j} d \underline{E}_{j} \\
=-\frac{1}{\beta} \sum_{j}\left(\ln p_{j}+\ln Q\right) d p_{j}+\sum_{j} p_{j}\left(\frac{\partial \underline{E}_{j}}{\partial \underline{V}}\right)_{N} d \underline{V} . \tag{1}
\end{gather*}
$$

Recall that the pressure,

$$
P=\left(\frac{\partial \underline{E}}{\partial \underline{V}}\right)_{N}
$$

or

$$
P_{j}=\left(\frac{\partial \underline{E}_{j}}{\partial \underline{V}}\right)_{N} .
$$

This yields for equation 1

$$
d\langle\underline{E}\rangle=-\frac{1}{\beta} \sum_{j} \ln p_{j} d p_{j}-\frac{1}{\beta} \sum_{j} \ln Q d p_{j}+\sum_{j} p_{j} P_{j} d \underline{V} .
$$

[Note that

$$
\begin{gather*}
d\left(\sum_{j} p_{j} \ln p_{j}\right) \\
=\sum_{j} \ln p_{j} d p_{j}+\sum_{j} p_{j} d\left(\ln p_{j}\right) \\
=\sum_{j} \ln p_{j} d p_{j}+\sum_{j} p_{j} \frac{d p_{j}}{p_{j}} . \tag{2}
\end{gather*}
$$

Since,

$$
\begin{aligned}
\sum_{j} p_{j} & =1 \\
\sum_{j} d p_{j} & =0 .]
\end{aligned}
$$

Thus, the right term in equation 2 is equal to 0 . This yields

$$
d\langle\underline{E}\rangle=-\frac{1}{\beta} d\left(\sum_{j} p_{j} \ln p_{j}\right)-\langle P\rangle d \underline{V}
$$

Recalling from the combined first and second laws (in intensive form, noting that since $N$ is a constant, intensive and extensive forms are equivalent):

$$
d U=T d S-P d V
$$

Since $U \leftrightarrow\langle E\rangle$ and $p \leftrightarrow\langle p\rangle$,

$$
T d S \leftrightarrow-\frac{1}{\beta} d\left(\sum_{j} p_{j} \ln p_{j}\right)
$$

Let

$$
X=-\sum_{j} p_{j} \ln p_{j}
$$

Then,

$$
\begin{equation*}
d S=\frac{1}{\beta T} d X \tag{3}
\end{equation*}
$$

We know that the left side of the equation is an exact differential, so the right side must be too, and thus, $\frac{1}{\beta T}$ must be a function of $X$. This means that

$$
d S=\phi(X) d X=d f(X)
$$

Integrating,

$$
\begin{equation*}
S=f(X)+\text { const } \tag{4}
\end{equation*}
$$

where we can set the arbitrary constant, const, equal to 0 for convenience.
Now we can make use of the additive property of $S$, and we can divide a system into two parts, $A$ and $B$. This yields:

$$
\begin{equation*}
S=S^{A}+S^{B}=f\left(X^{A}\right)+f\left(X^{B}\right) \tag{5}
\end{equation*}
$$

Note that

$$
X^{A+B}=-\sum_{i, j} p_{i, j} \ln p_{i, j}
$$

where $i$ is the index for the possible states of $A$ and $j$ is the index for the possible states of $B$. Then

$$
\begin{gathered}
X^{A+B}=-\sum_{i, j} p_{i}^{A} p_{j}^{B}\left(\ln p_{i}^{A}+\ln p_{j}^{B}\right) \\
=-\sum_{i} p_{i}^{A} \ln p_{i}^{A}-\sum_{j} p_{j}^{B} \ln p_{j}^{B} \\
=X^{A}+X^{B}
\end{gathered}
$$

Thus, from equation 5 ,

$$
S=f\left(X^{A}\right)+f\left(X^{B}\right)=f\left(X^{A}+X^{B}\right)
$$

For this to be so,

$$
f(X)=k X
$$

where $k$ is a constant. Thus,

$$
\begin{equation*}
S=-k \sum_{j} p_{j} \ln p_{j} \tag{6}
\end{equation*}
$$

From equations 3 and 4,

$$
\frac{1}{\beta T}=k
$$

and thus,

$$
\beta=\frac{1}{k T}
$$

We designate $k$ as Boltzmann's constant, a universal constant.

### 0.5 Microcanonical, Grand Canonical, and other ensembles

Recalling the formulation for $S$ from equation 6 , and noting that in the microcanonical ensemble,

$$
p_{j}=\frac{1}{\Omega}
$$

where we recall that $\Omega$ is the total number of states with the same energy, then

$$
\begin{gathered}
\underline{S}=-k \sum_{j} p_{j} \ln p_{j}=-k \sum_{j} \frac{1}{\Omega} \ln \frac{1}{\Omega} \\
=k \ln \Omega(N, \underline{V}, \underline{E})
\end{gathered}
$$

This is Boltzmann's famous formula for the entropy.
In the Grand Canonical ensemble, the number of particles in each system is allowed to fluctuate, but $\mu$ is kept constant. This is called the $(\underline{V}, T, \mu)$ ensemble. Also, there are other ensembles, such as $(N, P, T)$, etc. Note that from an analysis of fluctuations (Lecture 27), we shall see that in the macroscopic limit of a large number of systems, all of these ensembles are equivalent.

### 0.6 Relation of thermodynamic quantities to $\mathbf{Q}$

Recall that

$$
\begin{aligned}
\underline{S} & =-k \sum_{j} p_{j} \ln p_{j} \\
p_{j} & =\frac{e^{-\beta \underline{E}_{j}}}{Q} \\
Q & =\sum_{j} e^{-\beta \underline{E}_{j}}
\end{aligned}
$$

Plugging in the formula for $p_{j}$ into that for $\underline{S}$ yields

$$
\begin{aligned}
\underline{S} & =-k \sum_{j} \frac{e^{-\beta \underline{E}_{j}}}{Q} \ln \frac{e^{-\beta \underline{E}_{j}}}{Q} \\
& =-k \sum_{j} \frac{e^{-\beta \underline{E}_{j}}}{Q}\left(-\frac{\underline{E}_{j}}{k T}-\ln Q\right) \\
& =\frac{\langle\underline{E}\rangle}{T}+k \ln Q
\end{aligned}
$$

Recalling our definitions from macroscopic thermodynamics and the fact that $U \leftrightarrow$ $\langle E\rangle$ yields

$$
\underline{A}=-k T \ln Q
$$

Similarly,

$$
\begin{aligned}
\underline{S} & =-\left(\frac{\partial \underline{A}}{\partial T}\right)_{\underline{V}, N_{i}}=k T\left(\frac{\partial \ln Q}{\partial T}\right)_{\underline{V}, N_{i}}+k \ln Q \\
P & =-\left(\frac{\partial \underline{A}}{\partial \underline{V}}\right)_{T, N_{i}}=k T\left(\frac{\partial \ln Q}{\partial \underline{V}}\right)_{T, N_{i}} \\
\underline{U} & =\underline{A}+T \underline{S}=k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{\underline{V}, N_{i}}
\end{aligned}
$$

Thus, all thermodynamic properties can be written in terms of the partition function, $Q(N, \underline{V}, T)$ !

In order to compute $Q$, all we need are the possible energy levels of the system. We can obtain these from solving the equations of quantum mechanics.

