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0.1 Canonical ensemble

In the Canonical ensemble, each system has constant N,V ,and T.
After equilibration, remove all of the systems from the bath, and put them all

together:
Apply postulate 2 to the ensemble of systems, also called a supersystem.
Let nj = number of systems with energy Ej . Also, N =

P
j nj and Etot =P

j njEj .
If we know all Ej ’s, then the state of the entire ensemble would be well-defined.

For example, let’s analyze an ensemble with 4 systems, labeled A, B, C, and D,
where

A B C D
E2 E3 E2 E1

Then, Etot =E1 + 2E2+E3
Also, the distribution of the systems, −→n = (n1, n2,n3, ...) = (1, 2, 1).
But there are many different supersystems consistent with this distribution. In

fact, the number of supersystems consistent with this distribution is

Ωtot(
−→n ) = N !Q

j nj !
=

4!

1!2!1!
= 12

What is the probability of observing a given quantum state, e.g. Ej? In other
words, what is the fraction of systems in the ensemble in the state Ej?
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(Ensemble of systems)

Figure 1: Canonical ensemble

The answer is nj
N .

However, it may be the case that many distributions fulfill the conditions of the
ensemble, (N,V ,Etot).

For example, assume that there are two:

n1 = 1, n2 = 2, n3 = 1;Ωtot = 12

and

n1 = 2, n2 = 0, n3 = 2;Ωtot = 6

Then the probability of observing, for example, E3 is 14 in the first distribution
and 1

2 in the second.
The probability in the case where both distributions make up the ensemble is:

p3 =

µ
1

4

¶
1× 12 + 2× 6

12 + 6
=
1

3

In general,

pj =

µ
1

N
¶ P

−→n Ωtot(
−→n )nj(−→n )P

−→n Ωtot(
−→n )

where the sum is over all distributions satisfying the conditions of (N,V ,Etot).
Then, for example, we could compute ensemble averages of mechanical quanti-

ties:
E = hEi =

X
j

PjEj
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Figure 2: Canonical ensemble forming its own bath

and
P = hP i =

X
j

pjPj ,

where p is the pressure.

0.2 Maximum term method

Recall:

pj =

µ
1

N
¶ P

−→n Ωtot(
−→n )nj(−→n )P

−→n Ωtot(
−→n )

where

Ωtot(
−→n ) = N !Q

j nj !
.

As N →∞, nj →∞, for each j.
Thus, the most probable distribution becomes dominant. We can call this dis-

tribution, −→n ∗.
Let n∗j = nj in the

−→n ∗ distribution. Then

pj =
1

N
Ωtot(

−→n ∗)n∗j
Ωtot(

−→n ∗) =
n∗j
N

0.3 Most probable distribution

Which distribution gives the largest Ωtot?
Solve via method of undetermined multipliers:
Take natural log of Ωtot.

ln (Ωtot(
−→n )) = ln

µ N !Q
i ni!

¶
=

ÃX
i

ni

!
ln

ÃX
i

ni

!
−
X
i

ni lnni,

where we have switched the index from j to i and used Stirling’s approximation,
which becomes exact as ni →∞ :

ln y! ≈ y ln y − y.

We wish to find the set of nj ’s, which maximize Ωtot(
−→n ) and hence ln(Ωtot(−→n )) :

∂

∂nj

"
ln (Ωtot(

−→n ))− α
X
i

ni − β
X
i

niEi = 0

#
, j = 1, 2, 3, ...
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where α and β are the undetermined multipliers. Carrying out the differentiation
yields

ln

ÃX
i

ni

!
− lnn∗j − α− βEj = 0, j = 1, 2, 3, ...

or
n∗j = N e−αe−βEj , j = 1, 2, 3, ...

Recalling that
N =

X
j

n∗j

yields X
j

e−αe−βEj = 1

or
eα =

X
j

e−βEj .

Also,

hEi =
P

j n
∗
jEj

N =

P
j N e−αe−βEjEj

N =

P
j e
−βEjEjP
j e
−βEj

and

pj =
n∗j
N = e−αe−βEj =

e−βEjP
j e
−βEj ,

where
Q =

X
j

e−βEj

and, as we discussed in the last lecture, is the partition function, the normalization
factor.

0.4 Canonical ensemble continued and connection to ther-
modynamics

Recall from last time, via the maximum-term method in the canonical ensemble:

hEi =
P

j n
∗
jEj

N =

P
j N e−αe−βEjEj

N =

P
j e
−βEjEjP
j e
−βEj

and

pj =
n∗j
N = e−αe−βEj =

e−βEjP
j e
−βEj

,

where,
Q =

X
j

e−βEj ,

as we discussed in the last lecture, is the partition function, the normalization factor.

In addition, as we have shown:

E = hEi =
X
j

pjEj
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and
P = hP i =

X
j

pjPj ,

where P is the pressure.

If we differentiate the equation for hEi,

dhEi =
X
j

Ejdpj +
X
j

pjdEj

= − 1
β

X
j

(ln pj + lnQ) dpj +
X
j

pj

µ
∂Ej

∂V

¶
N

dV . (1)

Recall that the pressure,

P =

µ
∂E

∂V

¶
N

or

Pj =

µ
∂Ej

∂V

¶
N

.

This yields for equation 1

dhEi = − 1
β

X
j

ln pjdpj − 1
β

X
j

lnQdpj +
X
j

pjPjdV .

[Note that

d

X
j

pj ln pj


=
X
j

ln pjdpj +
X
j

pjd (ln pj)

=
X
j

ln pjdpj +
X
j

pj
dpj
pj

. (2)

Since, X
j

pj = 1,

X
j

dpj = 0.]

Thus, the right term in equation 2 is equal to 0. This yields

dhEi = − 1
β
d

X
j

pj ln pj

− hP idV .
Recalling from the combined first and second laws (in intensive form, noting that
since N is a constant, intensive and extensive forms are equivalent):

dU = TdS − PdV

Since U ↔ hEi and p↔ hpi,

TdS ↔ − 1
β
d

X
j

pj ln pj

 .
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Let
X = −

X
j

pj ln pj .

Then,

dS =
1

βT
dX. (3)

We know that the left side of the equation is an exact differential, so the right side
must be too, and thus, 1

βT must be a function of X. This means that

dS = φ(X)dX = df(X).

Integrating,
S = f(X) + const, (4)

where we can set the arbitrary constant, const, equal to 0 for convenience.
Now we can make use of the additive property of S, and we can divide a system

into two parts, A and B. This yields:

S = SA + SB = f(XA) + f(XB). (5)

Note that
XA+B = −

X
i,j

pi,j ln pi,j ,

where i is the index for the possible states of A and j is the index for the possible
states of B. Then

XA+B = −
X
i,j

pAi p
B
j (ln p

A
i + ln p

B
j )

= −
X
i

pAi ln p
A
i −

X
j

pBj ln p
B
j

= XA +XB.

Thus, from equation 5,

S = f(XA) + f(XB) = f(XA +XB).

For this to be so,
f(X) = kX,

where k is a constant. Thus,

S = −k
X
j

pj ln pj . (6)

From equations 3 and 4,
1

βT
= k,

and thus,

β =
1

kT
.

We designate k as Boltzmann’s constant, a universal constant.

6



10.40: Fall 2003 Appendix 7

0.5 Microcanonical, Grand Canonical, and other ensembles

Recalling the formulation for S from equation 6, and noting that in the microcanon-
ical ensemble,

pj =
1

Ω
,

where we recall that Ω is the total number of states with the same energy, then

S = −k
X
j

pj ln pj = −k
X
j

1

Ω
ln
1

Ω

= k lnΩ(N,V ,E).

This is Boltzmann’s famous formula for the entropy.
In the Grand Canonical ensemble, the number of particles in each system is

allowed to fluctuate, but µ is kept constant. This is called the (V , T, µ) ensemble.
Also, there are other ensembles, such as (N,P, T ), etc. Note that from an analysis
of fluctuations (Lecture 27), we shall see that in the macroscopic limit of a large
number of systems, all of these ensembles are equivalent.

0.6 Relation of thermodynamic quantities to Q

Recall that

S = −k
X
j

pj ln pj

pj =
e−βEj

Q

Q =
X
j

e−βEj

Plugging in the formula for pj into that for S yields

S = −k
X
j

e−βEj

Q
ln

e−βEj

Q

= −k
X
j

e−βEj

Q

µ
−Ej

kT
− lnQ

¶
=

hEi
T
+ k lnQ

Recalling our definitions from macroscopic thermodynamics and the fact that U ↔
hEi yields

A= −kT lnQ
Similarly,

S = −
µ
∂A

∂T

¶
V ,Ni

= kT

µ
∂ lnQ

∂T

¶
V ,Ni

+ k lnQ

P = −
µ
∂A

∂V

¶
T,Ni

= kT

µ
∂ lnQ

∂V

¶
T,Ni

U = A+ TS = kT 2
µ
∂ lnQ

∂T

¶
V ,Ni

.
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Thus, all thermodynamic properties can be written in terms of the partition func-
tion, Q(N,V , T )!
In order to compute Q, all we need are the possible energy levels of the system.

We can obtain these from solving the equations of quantum mechanics.
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