- 1. Problem 4.3
- 2. You are asked to prove that $\Delta \underline{S}$ for an irreversible, adiabatic process is always > 0. Consider the following closed system cyclic process for an ideal gas.
 - I. An irreversible, adiabatic expansion from point 1 at T_A , P_A to point 2 at T_B , P_B where $T_A > T_B$ and $P_A > P_B$.
 - II. A reversible, isothermal compression from point 2 to point 3 at T_B
 - III. A reversible, adiabatic compression from point 3 to point 1
 - (a) Assuming only *PdV* work, sketch a possible cyclic path for steps I –III on a *P-V* diagram.
 - (b) Using the exact differential, state function characteristics of <u>S</u> prove that $\Delta \underline{S}$ for step I is always > 0 for an ideal gas expanding adiabatically and irreversibly from point 1 at T_A , P_A to point 2 at T_B , P_B
 - (c) Is $\Delta \underline{S}$ for step I > 0 for a non-ideal gas as well? Explain your answer.
- 3. Problem 4.18

Be sure to state and justify all assumptions made