
Biot Numbers by David Adrian 

This document is a review* of some of the concepts of heat and mass transfer, 
particularly focusing on the dynamics at the interface between two disparate materials, 
such as the boundary of a solid particle submerged in a fluid.  In the cases considered, 
the interface is stationary and there is no phase change or chemical reaction at the 
interface. 

The Biot number is a dimensionless group that compares the relative transport 
resistances, external and internal.  It arises when formulating and non-dimensionalizing 
the boundary conditions for the typical conservation of species/energy equation for 
heat/mass transfer problems. 

If your problem consists of an object suspended in a well mixed fluid, commonly you 
only need to calculate the dynamics of the object (such as the temperature as a function of 
position and time).  If we focus on the fluid/object interface, the convective flux from the 
bulk fluid to the object must equal the diffusive flux from the surface to the interior of the 
object. This is typically formulated as a Robin boundary condition at the interface.  For 
example, consider the unsteady heat transfer in a solid sphere at initial temperature T0 
submerged in a fluid of temperature T∞ (this is also the “bulk” temperature, and could be 
given the symbol Tb). 

At the fluid-solid interface, the flux of heat into the sphere from the fluid must equal the 
flux of heat from the surface of the sphere to the interior. 
r r qexterior = qinterior 

q r exterior = h(Ts − T∞ )n r 

q r interior = −kT ∇T 
surface 

The variables are defined as follows: q is the heat flux, h is the heat transfer coefficient in 
the fluid, T is the temperature, n r  is the outwardly pointing normal from the solid, and kT 
is the thermal conductivity of the solid.  (Also recall that the heat transfer coefficient can 
be obtained from correlations, and is basically just kT , fluid /δT  in systems without any 
interfacial reactions or phase changes.  The variable δT is the thickness of the thermal 
boundary layer.) 

Since our system is spherically symmetric: 
q r exterior = h(Ts −T∞ )e r r 

r eq r interior = −kT 

dT 
r

dr surface 

dT

− kT
 = h(Ts −T∞ )


dr
 surface 

* I hope it is a review!  TAs should be knowledgeable about this stuff if you have questions. 
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We may non-dimensionalize the system by changing variables.  We must pick a 
characteristic length scale and temperature scale with the hope that our dimensionless 
temperature scale will be O(1)†, i.e. it goes from 0 to 1.  Also, we want the derivatives of 
that function with respect to our dimensionless length to also be O(1).  This is getting a 
good scaling for the problem. 

In this problem, a good dimensionless temperature is: 
T −T∞θ =

T0 −T∞


This temperature variable starts out at 1 and decays to zero once the solid and fluid 

temperatures are equal. 


A good dimensionless length is the inverse of the surface area to volume ratio: 

SA 4πR2 3r


η = r / L = r = r =

V (4 /3)πR3 R


L = R/3= O(R) in the case of a sphere so “L = R” would also be an okay choice. L is the 
“typical” length scale that heat in the solid particle must diffuse to get to the surface. 

Using our definitions of dimensionless length and temperature, our Robin boundary 
condition becomes: 

− kT 

(T0 − T∞ ) dθ 
= h(Ts − T∞ )


L dη
 surface 

dθ hL
− = θ = N Bi θsurface surfacedη surface kT 

hL L / kT "internal diffusion resistance"

N Bi = = =


kT 1/ h "external convection resistance"

By definition, our dimensionless temperature is at most 1.  Consider the effect of Biot 
number on the problem. 

Case 1: NBi<<1 
dθ

− = NBiθ 
surfacedη surface 

Since θ  is at most one, in order for the equation to be true the surface gradient in 
surface 

our dimensionless temperature is also small (as small as the Biot number).  This means 
that a good approximation to the dynamics can be found from a uniform temperature 
throughout the sphere (a lumped system model).  This means that the “external 
convection resistance” dominates the problem, and the “internal diffusion resistance” is 

† “Big O Notation” is used to state in rough terms the magnitude of terms relative to each other, usually 
only considering the order of magnitude or scaling 
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small relative to the convection resistance so that it can be neglected when determining 
the total resistance. (Think back to the “resistors in series” analogy in heat transfer.) 

For example, a small heat transfer Biot numbers can arise in the case of a small 
conductive metal sphere in a stagnant fluid such as air.  The convection speed is very 
slow (the resistance is large and h is small because the fluid is stagnant) and the 
conduction speed is very high (the thermal resistance is small, or the thermal conductivity 
is large, or the distance that heat has to diffuse in the object is very small). 

Case 2: NBi>>1 
On the other hand, if our Biot number is very large, the gradient must either be very large 
at the surface or θ  must be very small.  However, since we scaled the derivative 

surface 

dθ 
properly, should be O(1). This means that θ  is very small.  Recall that if θ

surfacedη surface 

is zero, this corresponds to the surface being in equilibrium with the bulk temperature (it 
takes the bulk value). This simplifies our boundary condition for the problem so that we 
can just use the condition that T (r = R) = Ts = T∞  and still get good results. 

Mass Transfer Biot Numbers 
In the case of mass transfer, the definition of the Biot number could get a little more 
complicated because the partition coefficient between phases is involved.  In this class, 
however, we aren’t worrying about partition coefficients, probably because we can’t 
easily measure the internal concentrations anyway so we lump their effect into other 
unknown constants (such as the surface reaction rate constant). 

The analogous case of a catalyst particle in a reactor fluid gives us the Robin boundary 
condition: 
W 
r 

exterior = km (cs − c∞ )e r r 

r dc r eWinterior = −De r
dr surface 

dc 
− D = km (cs − c∞ )e 

dr surface 

c − c∞θ = 
c0 − c∞ 

SA 4πR2 3r
η = r / L = r = r = 

V (4 /3)πR3 R 

(c0 − c∞ ) dθ 
− D = km (cs − c∞ )e 

L dη surface 
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dθ k L 
− = m θ = N θ

surface Bi,m surfacedη Dsurface e 

In this case, we should take a practical look at the terms in the Biot number and see if it is 
stuck in a particular range (always large, always small, etc.). 

k L
N Bi,m = m 

De 

D fluidkm =  (stationary interface with no interface reaction) 
δm 

N = 
D fluid L 

Bi,m 
D δe m 

The boundary layer is the largest it can be in a stagnant system, and in that case it is 
approximately the same length scale as L. (Consider the example of the Sherwood or 
Nusselt number for spheres in a stagnant medium.)  Thus the ratio L /δm  is typically 
greater than one. 

Also, the diffusivity of the species in the fluid is typically much greater than the effective 
diffusivity in the particle, where the species has to navigate the tortuous pore space.  Thus 
D fluid / De  is also typically much greater than one. 

Let’s consider the mass transfer Biot number definition again and consider what it means 
in words: 

D fluid L L / De "internal diffusion resistance" 
NBi,m = = = >>1 

De δm δm / D fluid "external diffusion resistance" 
So the consequence of this ratio is that whenever we are looking at a reactor where we 

have bulk kinetic data, if we find out that we have an external diffusion limitation, we 

know that we must also have an internal diffusion limitation. 


However, we might not be all that concerned, because when you have an external 

limitation, you may be able to predict the reaction rate purely by considering the surface 

flux: 

− r ' '= W = km (cb − cs ) ≈ kmcb because cs << cb  when external limitations prevail. 
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