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1 Introduction to Stochastic Chemical Kinetics

Consider the reaction

I + I → D.

The conventional kinetic model for the concentration of I in a closed system is given by

dCI
(t) = −kCI(t)CI(t),

dt

where k is the rate constant. The stochastic approach to chemical kinetics is concerned
with modeling chemical reactions in situations where the assumptions underlying equa-
tions of this type break down. In order to illustrate this, suppose that the reaction above
is occuring in a drop of water of volume V , which contains only a very small number, say
3, of molecules of I. The kinetic equation above encounters the following complications:

1. The state CI changes in discrete increments. We can rewrite the equation above in
terms of the number of molecules of I as

dNI k
(t) = −

dt

(

NAv
I

V

)

NI(t)N (t),

where NAv is Avogadro’s number. Solving this ODE from some known initial con-
dition, we are assuming that the number of molecules NI changes continuously and
can take any value in R (this is called a continuum assumption). Surely, if we
begin solving this equation with NI(t0) = 3, there will come a time t′ at which
NI(t

′) = 2.5. However, in reality this quantity should only take integer values; it
doesn’t make physical sense to have 2.5 molecules. In cases where we have a very
large number of molecules, say NI ≈ 1 × 1023, this issue can be easily overlooked
because a difference of 0.5 out of 1023 causes very little error in the rate equation.
However, the problem can become very serious for small numbers of molecules. In
the worst case, if NI = 2, then only one reaction can occur, after which NI = 0
and the reaction rate must also be zero. However, the continuum approximation
predicts a nonzero rate with, for example, NI = 0.5.

2. Reactions occur as discrete events. The continuum approximation predicts a nonzero
rate of reaction whenever, NI 6= 0. However, in reality reactions are not always
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occuring. Reactions occur when two molecules collide with each other in the proper
orientation and with sufficient energy to cause a chemical change. Therefore, a
correct model should have intervals of time in which no reactions occur, punctuated
by instantaneous reaction events that change NI in integer increments, according
to the reaction stoichiometry. From this prospective, it is incorrect to talk about
a reaction rate at all. Again, if there are very many molecules (NI ≈ 1023), then
reactive collisions will happen very frequently and, insofar as we are only interested
in the macroscopic average number of these reaction events in a given interval of
time, it is completely excusable to think in terms of reaction rates and apply the
continuum approximation.

3. Reaction events are stochastic. Because the continuum approximation regards re-
actions as happening continuously with some rate, there is no need to worry about
when the underlying reaction events occur. However, if we regard reactions as dis-
crete events, how will we predict when these events will occur? Short of modeling
the motion of every molecule in our system using Newton’s equations of motion,
we cannot answer this question precisely. We will have to settle for the probability

that some reaction will occur in a given interval of time. From this prospective, our
perceived behavior of systems with very few molecules is not deterministic. That
is, in contrast to what the continuum approximation suggest, the initial condition
of the system will not fully specify the system at later times. Rather, the state at
later times depends on what sequence of reaction events occurs, which we can only
characterize in terms of probabilities. Systems of this type are called stochastic.

To reiterate, we are concerned with studying (and ultimately simulating) the behavior
of chemically reacting systems in situations where the continuum equations do not ap-
ply. In general, this will only happen when one or more reactions depend on a chemical
species which is present in very small numbers. However, there are other situations in-
volving unstable or metastable systems which also require a stochastic treatment because
fluctuations in the number of molecules are important. Since the continuum model only
captures some kind of average behavior, it cannot predict phenomena which depend on
fluctuations.

1.1 Motivating Example

A very interesting system related to cell signaling pathways in human immune response
was studied by researchers in Prof. Charkraborty’s lab here at MIT. Their work shows
that, not only is stochastic simulation warranted for these systems, but also that the
stochastic model predicts fundamentally different behavior than does the continuum ap-
proximation, and this behavior is crucial to the functioning of the signalling pathway. If
you are interested, see Artyomov et. al, Purely stochastic binary decisions in cell signaling

models without underlying deterministic bistabilities, PNAS, 104, 48, 18958-18963, 2007.
However, note that this is not an isolated application. Since the popularization of the
stochastic approach in the 1970’s, there has been a steady increase in its application and
today the literature positively abounds with examples.
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2 Formalization of the Stochastic Problem

Consider a volume V containing N chemically reacting species, S1, . . . , SN , and denote
the number of molecules of each at time t by

X(t) = (X1(t), . . . , XN (t)).

These species can undergo M chemical reactions, R1, . . . , RM . Each reaction Rµ has an
associated stoichiometry vector νµ, which describes the discontinuous change in X when
the reaction Rµ occurs. For example, if N = 3, then the reaction

S1 + S2 → S3 (1)

has stoichiometry vector ν = (−1,−1, 1). If this reaction occurs at t̂ and the number of
molecules immediately before t̂ is X(t̂ − dt) = (10, 10, 10), then after the reaction occurs
we have X(t̂+dt) = (9, 9, 11). In general, the occurrence of reaction Rµ at time t̂ changes
the state vector according to

X(t̂ + dt) = X(t̂ − dt) + νµ.

As mentioned previously, we will not simulate reacting systems in enough detail to
say deterministically when a given reaction will occur. Instead, we assume that these
reactions occur stochastically, according to some probability distributions. Our goal is to
understand what these distributions are, and how they can be used to describe the state
of the system at future times probabilistically. In the following subsections, we present
some preliminary derivations concerning the probabilities of reaction events. In Sections
3 and 4, we use these derivations to construct numerical simulation methods.

2.1 The Number of Possible Rµ Reactions

In order for a reaction Rµ to occur in V , it is necessary that one molecule of each of the
reactant species collide with each other at some time. At any given time, it is possible that
there are many different combinations of reactant molecules that could collide and cause
a reaction. Exactly, how many distinct combinations there are depends on how many of
each molecule is present, i.e. on X(t). In general, we denote the number of unique groups
of reactants that could collide to cause reaction Rµ by hµ(X(t)).

Examples:

1. Consider the simple bimolecular reaction (1). If there are 2 molecules of S1 and
one molecule of S2, then there are 2 pairs of molecules that can collide to cause a
reaction. In general,

hµ(X(t)) = X1(t)X2(t).

2. A more interesting case is the reaction

S1 + S1 → S3. (2)

In this case

1
hµ(X(t)) = X1(t)(X1(t) − 1),

2
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not the expected X1(t)X1(t). This is because the reaction requires two distinct S1

molecules; we cannot use the same molecule twice. You can convince yourself that
the factor (X1(t) − 1) is correct by considering the case where there is only one S1

molecule in V . In this case, there are zero complete groups of reactants. The factor
of 1/2 comes from the fact that we do not care about the order of the molecules.
For two distinct molecules of S1, call them S′

1 and S′′

1 , the pair (S′

1, S
′′

1 ) constitutes
a single group of reactants, regardless of whether we order them as (S′

1, S
′′

1 ) or as
(S′′

1 , S′

1).

3. Consider the isomerization

S1 → S2. (3)

Isomerizations do not occur due to collisions at all, but rather due to some spon-
taneous change in the quantum state of the molecule. Nonetheless, if there are
2 molecules of S1, it is clear that there are 2 “groups” of reactant molecules. In
general,

hµ(X(t)) = X1(t).

2.2 The Probability that Reaction Rµ Occurs in [t, t + dt]

2.2.1 The Fundamental Hypothesis

Supposing that at least one complete group of Rµ reactants exists in V , let πµ(t, dt)
denote the probability that a particular one of these groups will react in the time interval
[t, t + dt]. The fundamental hypothesis of the stochastic approach to chemical kinetics is
the following: For each reaction Rµ, there is a constant cµ such that

πµ(t, dt) = cµdt.

In words, the fundamental hypothesis states that, for small enough durations dt, the
probability that a particular group of Rµ reactants will react in V during the interval
[t, t + dt] increases linearly with dt. This assumption is well justified for elementary
unimolecular and bimolecular reactions. In the bimolecular case, one can derive the
constant cµ from the kinetic theory of gases (which you will study extensively in 10.65
next semester). The basic assumptions behind this derivation are:

1. the positions of the molecules in V are random and uniformly distributed throughout
V ,

2. the velocities of the molecules in V are distributed according to the Maxwell-
Boltzmann distribution.

Under these assumptions, it is possible to derive the probability of a collision between
two molecules within a given time interval. The purpose of mentioning this is to point
out that the stochastic approach to chemical kinetics will be valid for gas phase systems
in thermal equilibrium, but not necessarily in other settings.

A consequence of the fundamental hypothesis, which greatly simplifies the analysis to
follow, is that the probability that multiple reaction events, of any kind, occur in [t, t+dt]
can be shown to scale as O(dt2). Then, in the limit as dt → 0, the probability of all
such situations tends toward zero more rapidly than dt, and becomes dominated by the
probability of the simpler outcomes where only a single reaction occurs in [t, t + dt]. For
this reason, we can always assume in the following derivations that all single reaction
events in [t, t + dt] are mutually exclusive, because only one reaction can occur. Though
this is not strictly true, the error in making this assumption will vanish as dt → 0.
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2.2.2 The Probability of an Rµ Reaction in [t, t + dt]

In order to understand how the state of a reacting system X(t) evolves probabilistically,
we will require the probability that exactly one reaction occurs in V during [t, t+dt], and
it is an Rµ reaction. By the simplification that at most one reaction can occur during
[t, t + dt] this is equivalent (to within O(dt2)) to several other probabilities:

Pr(exactly 1 rxn occurs in [t, t + dt] and it is an Rµ reaction | X(t) = n) (4)

= Pr(exactly 1 Rµ rxn occurs in [t, t + dt] | X(t) = n),

= Pr(at least 1 Rµ rxn occurs in [t, t + dt] | X(t) = n).

To compute this probability, recall that there are hµ(X(t)) distinct groups of reactants
that could possibly react in [t, t + dt], each with probability cµdt. Since we may assume
that these hµ possible reactions are mutually exclusive, then we may sum the individual
probabilities to get

Pr(exactly 1 Rµ rxn occurs in [t, t + dt] | X(t) = n) = hµ(n)cµdt.

2.2.3 The Connection with Rate Constants

In stochastic chemical kinetics, cµ plays the role of the rate constant kµ in determinis-
tic, continuum kinetics equations. For example, for the reaction shown in (1) we have
hµ(X(t)) = X1(t)X2(t), so the probability of observing exactly one Rµ reaction some-
where in V during [t, t + dt] is

cµX1(t)X2(t)dt,

which is very reminiscent of the rate expression in the continuum approximation,

rµ(t) = kµC1(t)C2(t).

Of course, for the dimerization reaction (2), these expressions do not agree so well.
For the purposes of simulating stochastic reacting systems, we will always assume that

the reaction parameters cµ are known.

2.3 The Probability Exactly One Reaction Occurs in [t, t + dt]

From §2.2, we know that the probability that exactly one Rµ reaction will occur during
[t, t + dt] is

cµhµ(X(t))dt.

Since we need only consider the case where at most one reaction occurs in [t, t + dt],
the occurrences of each different type of reaction R1, . . . , RM are mutually exclusive. It
follows that we can simply sum probabilities to get

Pr(exactly 1 rxn occurs in [t, t + dt] | X(t) = n)

M

=
∑

Pr(exactly 1 Rµ rxn occurs in [t, t + dt] | X(t) = n),
µ=1

M

=
µ

∑

hµ(n)cµdt
=1
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2.4 The Probability that No Reactions Occur in [t, t + τ ]

In the stochastic view of chemical kinetics, there are periods of time in which nothing
happens. That is, molecules diffuse around in V but, for some period of time, none of
them collide in a such a way that a reaction occurs. In order to accurately simulate this
situation, we need some way to characterize when the next reaction will happen. A formal
way to ask this question is: Given that X(t) = n, what is the probability that no reactions

occur in V within the time interval [t, t + τ ]? We denote this probability by P0(τ,n).
We consider first the probability P0(ǫ,n), where ǫ is small. For small enough ǫ, we

may assume that at most one reaction occurs in V during [t, t + ǫ]. It follows that

P0(ǫ,n) = 1 − Pr(exactly 1 rxn occurs in [t, t + ǫ] | X(t) = n),

M

= 1 −
µ

∑

hµ(n)cµǫ.
=1

In order to calculate P0(τ,n), we divide [t, t + τ ] into a large number K intervals of
length ǫ = τ/K:

[t, t + ǫ], [t + ǫ, t + 2ǫ], . . . , [t + (K − 1)ǫ, t + Kǫ].

Noting that

P0(τ,n) = Pr(no rnx occurs in [t, t + ǫ]

and no rxn occurs in [t + ǫ, t + 2ǫ]

and

...

and no rxn occurs in [t + (K − 1)ǫ, t + Kǫ] | X(t) = n),

we can expand this probability as

P0(τ,n) = Pr(no rnx occurs in [t, t + ǫ] | X(t) = n)

× Pr(no rxn occurs in [t + ǫ, t + 2ǫ] |

X(t) = n and no rnx occurs in [t, t + ǫ])

...

× Pr(no rnx occurs in [t + (K − 1)ǫ, t + Kǫ] |

X(t) = n and no rnx occurs in [t, t + (K − 1)ǫ]).

For any j ≤ K, whether or not a reaction occurs in the interval [t + (j − 1)ǫ, t + jǫ] is
independent of the fact that no reaction occurred in [t, t + (j − 1)ǫ], except for the fact
that this implies X(t + (j − 1)ǫ) = X(t). Then

P0(τ,n) = Pr(no rnx occurs in [t, t + ǫ])

× Pr(no rnx occurs in [t + ǫ, t + 2ǫ] | X(t + ǫ) = n)

...

× Pr(no rnx occurs in [t + (K − 1)ǫ, t + Kǫ] |

X(t + (K − 1)ǫ) = n),
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from which it follows that

P0(τ,n) = P0(ǫ,n) × P0(ǫ,n) × . . . × P0(ǫ,n).

Using the result for small ǫ,

P0(τ,n) =

[

M
τ

1
µ

∑ cµhµ(n)
−

=1

K

K

]

.

Since this is true for any sufficiently large K, it follows that

M
cµhµ(n)τ

P0(τ,n) = lim

[

1 −
K→∞

µ

∑

=1
K

]K

,

= exp

(

M

−
∑

cµhµ(n)τ

)

.
µ=1

Therefore, the probability that no reaction occurs in the interval [t, t + τ ] depends on all
of the reaction parameters cµ and decreases exponentially with the length of the interval
τ .

3 The Master Equation

The classical approach to modelling the evolution of stochastic reacting systems is to use
the so-called chemical master equation. The master equation does not describe the change
in X(t), as the continuum equations would, because this vector varies stochastically.
Instead, the master equation describes the grand probability function

P (n, t | n0, t0) = Pr(X(t) = n | X(t0) = n0).

The master equation takes the form of a differential equation that describes how this
probability function changes in time. To derive it, lets suppose that P (n, t | n0, t0) is
known for all n and attempt to derive an expression for P (n, t + dt | n0, t0). This is done
by simply summing up the probabilities of the distinct (i.e. mutually exclusive) ways in
which the system could come to be in state n at time t + dt:

1. The system was in state n at time t and no reactions occurred during [t, t + dt],

2. The system was in the state n − νµ at time t and one Rµ reaction (and only this
reaction) occurred during [t, t + dt],

3. Some sequence of multiple reactions occuring in [t, t + dt] led to n at t + dt.

As a consequence of the fundamental hypothesis, it was argued in §2.2 that we can ig-
nore the third possibility in the limit as dt → 0. Accounting for the other two possibilities,
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we have

M

P (n, t + dt | n0, t0) = P (n, t | n0, t0)P0(dt,n) +
∑

P (n− νµ, t | n0, t0)hµ(n− νµ)cµdt,
µ=1

= P (n, t | n0, t0)

[

M

1 −
µ

]

∑

hµ(n)cµdt
=1

M

+
∑

P (n − νµ, t | n0, t0)hµ(n − νµ)cµdt.
µ=1

Rearranging gives,

P (n, t + dt | n0, t0) − P (n, t | n0, t0)
M

=
∑

[

P (n− νµ, t | n0, t0)hµ(n − νµ)cµ
dt

µ=1

− P (n, t | n0, t0)hµ(n)cµ ,

which, in the limit as dt → 0 gives the differential equation

]

dP (n, t | n0, t0)
M

=
∑

[P (n − νµ, t | n0, t0)hµ(n− νµ)cµ − P (n, t | n0, t0)hµ(n)cµ] .
dt

µ=1

Supposing that, due to a limited number of reactant molecules in a closed system, we know
that there are only a finite number of possible states of the system n1, . . . ,nQ. Then the
master equation is actually a system of Q coupled ODEs, with one ODE describing each
of the time-varying probabilities

P ( 1n , t | n0, t0), . . . , P (nQ, t | n0, t0).

The solution of the master equation contains complete information about the stochas-
tic behavior of the system. It describes the entire PDF of X(t) for every time t. Unfortu-
nately, the master equation is very difficult to solve in general. This is because the master
equation may involve a huge number of state variables. Note that the state variables of
the master equation are the probabilities of every possible state of the reacting system.
As a trivial example, in a system with only one chemical species A, the master equation
has one ODE for the probabilities of each of the following states:

there is 1 molecule of A

there are 2 molecules of A

there are 3 molecules of A
...

there are j molecules of A
...

When there are multiple reacting species, we must account for every possible combination
of molecule numbers, and the number of ODEs in the master equation easily reaches
into the billions. Because the master equation ODEs are actually linear in these states
(and very sparse), it is possible to numerically solve the master equation as an IVP in
situations where the number of ODEs is surprisingly large. Researchers in Professor
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Barton’s laboratory have developed methods capable of solving master equations with
up to 200 million ODEs. Even so, master equations of this size still correspond to very
simple physical systems. For this reason, most researchers take a Monte Carlo approach,
which provides less information but is more computationally tractable. We discuss this
approach in the next section.

4 Gillespie’s Algorithm

The solution of the master equation provides, at each time t, a PDF for the random
vector X(t). This is a great deal of information, which is why the master equation is so
difficult to solve. Rather than compute the complete PDF of X(t) for every t, Gillespie’s
algorithm computes a sample from this PDF. That is, it computes a single trajectory in
time. Like the Monte Carlo methods we studied previously, Gillespie’s algorithm produces
a different result every time it is run. However, if it is run a large number of times for the
same system, then the frequency of observing a state, say X(t̂) = n∗, will be proportional
to the value of the PDF that results from solving the master equation, P (n∗, t̂ | n0, t0).
Because only a sample is computed, a single run of Gillespie’s algorithm is dramatically
less expensive that solving the master equation. The down side, however, is that it may
be necessary to do a huge number of Gillespie simulations in order to obtain an accurate
description of the complete PDF.

Beginning from X(t) at some time t, a single step of Gillespie’s algorithm first generates
a random number τ which represents the time at which the next reaction occurs. Then,
a random integer µ is generated which determines which reaction occurs at t + τ . Once
these numbers are known, we simply update the time to t + τ and the state vector to
X(t + τ) = X(t) + νµ.

4.1 Determining the Next Reaction Time

We require the probability that the next reaction occurs in the infinitesimal time interval
[t + τ, t + τ + dτ ]. Denote this probability by Pnext(τ,n)dτ . This probability can be
computed by noting that

Pnext(τ,n)dτ = Pr(no rxn occurs in [t, t + τ ] | X(t) = n)

× Pr(exactly one rxn occurs in [t + τ, t + τ + dτ ] |

X(t) = n and no rxn occurs in [t, t + τ ]),

= Pr(no rxn occurs in [t, t + τ ] | X(t) = n)

× Pr(exactly one rxn occurs in [t + τ, t + τ + dτ ] | X(t + τ) = n),

= P0(τ,n) ×

[

M

µ

∑

hµ(n)cµdτ
=1

]

,

= exp

(

M M

−
µ

)[ ]

∑

hµ(n)cµτ
=1 µ

∑

hµ(n)cµdτ .
=1

To simplify notation, define the total reaction propensity:

M

a(n) ≡
µ

∑

hµ(n)cµ.
=1
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Then,

Pnext(τ,n) = a(n) exp (−a(n)τ) .

For fixed n, this is the PDF of the random variable τ . In order to determine the next
reaction time for Gillespie’s algorithm, we would like to sample this PDF. It turns out
that this can be done by generating a random number r1 from the uniform distribution
on the interval (0, 1) and computing

1
τ =

a(n)
ln

(

1
.

r1

)

This is an example of the inversion method, which is one of the available methods for
converting the output of a uniform random number generator to a sample of a desired
PDF.

4.2 Determining the Next Reaction Type

We now need to derive the probability that an Rµ reaction occurs in [t + τ, t + τ + dτ ]
given that X(t) = n and the next reaction is known to occur in this same interval. As
usual, we can neglect the possibility of multiple reactions occuring in this time interval,
so that we are guaranteed that exactly one reaction occurs in [t + τ, t + τ + dτ ]. There
are then M mutually exclusive possibilities, R1, . . . , RM , each with probability

hµ(n)cµdτ, µ = 1, . . . , M.

Clearly, the probability that reaction Rµ′ occurs is

hµ′(n)cµ′dτ
∑M

µ=1 hµ(n)cµdτ
=

hµ′(X(t))cµ′

.
a(n)

For fixed n, this is the PDF of the random variable µ′, which we need to sample in order
to determine the next reaction type in Gillespie’s algorithm. This is done by sampling
a number r2 from the uniform distribution on (0, 1) and choosing µ′ to be the smallest
integer such that

1 µ
≤

∑µ′

µ= hµ(n)c
r2 .

a(n)

In fact, this is another application of the inversion method. In this case it is easy to see
that the probability of selecting µ′ in this way is proportional to the length of the interval

[

∑µ′
−1

µ=1 hµ(n)cµ

a(n)
,

∑µ′

µ=1 hµ(n)cµ
,

a(n)

]

which is simply

hµ′(n)cµ′

,
a(n)

as desired.
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4.3 Algorithm

1. Initialize: t = t0, X(t) = n0.

2. While t < tf :

(a) Compute the total reaction propensity a(X(t)).

(b) Sample two random numbers, r1 and r2, from the uniform distribution on
(0, 1).

(c) Determine the next reaction time as τ = 1
a(X(t)) ln

(

1
r1

.

′

(d) Determine the reaction type as the smallest µ′ such that

)

r ≤
∑µ

2 µ=1 hµ(X(t))cµ/a(X(t)).

(e) Carry out the reaction event determined above:

• Set t := t + τ .

• Set X(t) := X(t) + νµ′ .
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