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Partial differential equations (PDEs) are all BVPs, with the same issues about specifying boundary 
conditions etc. Because they are multi-dimensional, they can be very CPU intensive to solve, similar to 
multidimensional integrals.  

For example, a 3-d pde (e.g. steady-state Navier Stokes) will typically require a mesh of at least (100)3 = 
106 points, so one is computing at least 106*Nvariables  unknowns, where the unknowns might be (for a 
compressible reacting flow) [ρ, T, vx, vy, vz, y1, y2, …]  where yi is the mass fraction of species i. So Nvariables 
= Nspecies+5.  As the Reynolds number increases the mesh density has to increase, so this quickly becomes 
unmanageable. 

Note that while we often can reduce problems to manageable 2-d PDEs taking advantage of symmetry 
or making approximations, many real-world PDEs have dimensionality>3 (e.g. the Schroedinger 
equation, time-dependent Navier-Stokes, etc.). 

Like ODEs, certain PDEs are intrinsically unstable (e.g. because the physical situation is extremely 
sensitive to small fluctuations), and those are challenging-to-impossible to solve accurately using 
numerical methods, since numerical errors get amplified. One example is detonation, where a small 
initiation event gets amplified into a strong shock wave. Another is the growth of a tumor or a bacterial 
culture, where a mutation or other small change in one cell can lead to a complete change in 
morphology and composition of the system at later times. 

Another class of PDEs, called “hyperbolic” (see Beers page 276 for the mathematical definition) have 
solutions that are propagating waves. Any small fluctuation at early times propagates to later times, 
often with no or very minor damping. Examples include acoustics and Maxwell’s equations. Special 
methods are needed to model these, to avoid having the undamped numerical errors accumulate into a 
lot of noise in the answer.  If hyperbolic problems are solved using naïve numerical solution methods, 
one often obtains unphysical oscillations in the numerical solution. 

In 10.34 we focus primarily on “elliptic” and “parabolic” PDEs, where the physics (e.g. diffusion, 
viscosity) dampens both the real fluctuations, and the numerical noise introduced during the solution.  

The conceptual difference between hyperbolic, parabolic, and elliptic PDEs has to do with the flow of 
information. If I adjust the value of a state variable at one mesh point, does that adjustment affect the 
computed value at other points, i.e. does point X know what is happening at point Y? In the case of 
elliptic PDEs, each point is sensitive to all the others. In hyperbolic PDEs, there are regions that are not 
sensitive to each other at all (e.g. a supersonic shock wave is propagating so fast that it cannot feel 
pressure fluctuations happening behind it at all, since information about them only moves at the speed 
of sound). Parabolic PDEs have all points in the future sensitive to everything that happened in the past, 
but not vice-versa. 
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For problems with significant convection, what happens downwind is very much controlled by what 
already happened upwind. In that case, it is much better to use “upwind differencing” than centered-
differencing. Only if there is real information flow from downwind should the downwind values affect 
upwind values in the numerical procedure.  Contrast Fig. 6.7 and Fig. 6.8 in Beers’ textbook, to see how 
important this is for avoiding numerical instabilities. 

 

Methods for solving PDEs 

One can directly apply all the relaxation methods (collocation, Galerkin, finite differences) much the 
same as in ODE-BVPs, converting the PDE into a large system of nonlinear algebraic equations.  

    F(c)=0 

This is how most elliptic PDEs are solved. The main challenge is the huge number of unknowns, and the 
size of the corresponding Jacobian matrix. Using a method that makes a very sparse Jacobian (e.g. using 
a local basis set) is key. Finding a sufficiently good initial guess can also be very challenging. There are 
many special methods developed to try to handle these huge systems.  

Note that the key step at each iteration in solving a system of nonlinear equations is to solve the 
equation  

J*∆c = - F 

Normally we would solve this by Gaussian elimination. However, when J is huge this is not practical, e.g. 
we may not have enough memory to even store the intermediate matrices (remember the problem of 
Gaussian fill-in, so even if J is sparse the intermediate matrices will not be so sparse). So instead we 
would like to solve this equation using “direct” methods, which do not require storing any large 
intermediate objects. Several methods have been proposed to do this. One of the most successful is 
Conjugate Gradient, where one rewrites the problem as a minimization 

min q = (F+J*∆c)T(F+J*∆c) 

The Conjugate Gradient method for minimization only requires evaluating J*v not solving J*v=b, and 
evaluating J*v does not require storing any matrices (you can compute the non-zero elements of J, use 
them, and delete them). However, it is an iterative method, so it does not solve this quadratic 
minimization problem exactly in one step like Newton-Raphson would (so at each iteration in solving the 
PDE problem we are going to do several sub-iterations to solve J*∆c=-F). Also, if many sub-iterations are 
required numerical noise can creep in causing problems, so people currently use a fancier version called 
bicgstab instead of the simple Conjugate Gradient algorithm. The performance of Conjugate Gradient is 
dramatically improved if the matrix J is well-conditioned (i.e. cond(J) ~ 1), so people often use 
“preconditioners” A and B to modify the matrix: 

(A*J*B)*v = -(A*F)         B*v = ∆c 
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There are many different ways to come up with preconditioners A and B that work well for a particular J; 
for some introduction see discussion in Beers’ textbook. 

Finding a good initial guess at c can also be a big problem. Sometimes the PDE system is for a steady-
state solution, and the corresponding time-dependent PDE is also known. If by the physics any initial 
guess will eventually lead to the steady-state of interest, one can start from a poor initial guess and 
time-march toward the solution for a while (using the method of lines discussed below) to refine the 
initial guess. When the guess gets good enough that || F(c_guess) || < tol, then one switches from time-
marching to just solving the system of non-linear equations. 

 

 

Method of Lines 

For parabolic PDEs, where the special direction is time, one popular approach is to discretize the space 
dimensions (e.g. replace all the spatial derivatives with finite-difference approximations). For example, 
the PDE equation  

∂c/∂t = D ∂2c/∂x2  - v ∂c/∂x  + r(c) 

might be replaced by the finite difference equation 

dc(m)/dt = D {c(m-1) – 2 c(m) + c(m+1)} /(∆x)2 - v { c(m-1)-c(m) } /∆x + r(c(m)) 

There will be similar equations for each mesh point xm. This can be compactly written 

dc/dt = F(c) 

where c is the vector [c(1); c(2);…; c(m); c(m+1);…c(M)]. Note every element of this long vector (except 
maybe some on the boundaries) are time dependent. 

It one knows all the boundary conditions at t0, this is an ODE-IVP, and can be solved that way. This is 
called “The Method of Lines”. This is very practical for systems with one spatial dimension, where the 
number of spatial mesh points M might be as small as 100. It can even be done for 3-d problems, where 
the number of mesh points M>106, if an explicit ODE-IVP method can be used, in fact this is how the 
best existing Navier-Stokes reacting-flow solvers work (see papers by Jacqueline H. Chen). 

If one is using Method-of-Lines to time-march to an initial guess, there is no reason that one needs to be 
“time-accurate”: all you want to do is to get to the long-time solution (which will be close to the steady-
state solution and so a good initial guess) as quickly as possible. One way to accelerate the time-
marching is to use Implicit Euler with relatively large time steps: 

Cnew = Cold + ∆t * F(Cnew) 
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However, note that this is still a (huge) system of nonlinear equations, and so it may need to be solved 
iteratively using Conjugate Gradient methods rather than Newton-Raphson with Gaussian elimination. 
And solving this systems of equations also needs an initial guess… which perhaps we could supply using 
an explicit ODE-IVP solver. 
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