I0.34: Numerical Methods Applied to Chemical Engineering

Lecture 16:
ODE-IVP and Numerical Integration

Quiz I Results

- Mean: 70.6
- Standard deviation: II. 0

Recap

- Implicit methods for ODE-IVPs

Recap

- Example:
- Use implicit Euler to solve:

$$
\frac{d x}{d t}=\lambda x, x(0)=x_{0}
$$

Give a closed form formula for the numerical solution

Recap

- Example:
- Use implicit Euler to solve:

$$
\frac{d x}{d t}=\lambda x, x(0)=x_{0}
$$

- Let:

$$
\begin{aligned}
& x_{k}=x(k \Delta t) \\
& x_{k+1}=x_{k}+\Delta t \lambda x_{k+1} \\
& x_{k+1}=\frac{1}{1-\Delta t \lambda} x_{k} \\
& x_{k}=\left(\frac{1}{1-\Delta t \lambda}\right)^{k} x_{0}
\end{aligned}
$$

- Stability:

$$
|1-\Delta t \lambda| \geq 1 \Rightarrow(1-\Delta t \operatorname{Re} \lambda)^{2}+(\Delta t \operatorname{Im} \lambda)^{2} \geq 1
$$

Recap

- Example:
- Use implicit Euler to solve:

$$
\frac{d x}{d t}=\lambda x, x(0)=x_{0}
$$

- Numerical solution:

$$
x_{k}=\left(\frac{1}{1-\Delta t \lambda}\right)^{k} x_{0}
$$

- Exact solution:

$$
x_{k}=x_{0} e^{k \lambda \Delta t}
$$

- Stability and accuracy do not correlate!

Multistep Methods

- Multistep methods utilize information over multiple time steps to approximate the solution of an ODE.
- These can be designed for higher accuracy, larger stability bounds or both.
- Example: Leapfrog method

$$
\frac{d \mathbf{x}}{d t}=\mathbf{f}(\mathbf{x}(t), t)
$$

- Approximate derivative with central difference:

$$
\begin{array}{rl}
\frac{1}{2 \Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t-\Delta t))=\mathbf{f}(\mathbf{x}(t), t) \\
\mathbf{x}\left(t_{k+1}\right) & =\mathbf{x}\left(t_{k-1}\right)+2 \Delta t \mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right) \\
k-1 & k+1
\end{array}
$$

Multistep Methods

- Local accuracy of the leap frog method:

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d t}=\frac{1}{2 \Delta t}\left(\mathbf{x}\left(t_{k+1}\right)-\mathbf{x}\left(t_{k-1}\right)\right)+O\left((\Delta t)^{2}\right)=\mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right) \\
& \mathbf{x}\left(t_{k+1}\right)=\mathbf{x}\left(t_{k-1}\right)+2 \Delta t \mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right)+O\left((\Delta t)^{3}\right)
\end{aligned}
$$

- Stability of the leap frog method:

$$
\frac{d x}{d t}=\lambda x
$$

$$
x_{k+1}=x_{k-1}+2 \Delta t \lambda x_{k}
$$

$$
\begin{gathered}
\binom{x_{k+1}}{x_{k}}=\left(\begin{array}{cc}
2 \Delta t \lambda & 1 \\
1 & 0
\end{array}\right)\binom{x_{k}}{x_{k-1}} \\
\binom{x_{k+1}}{x_{k}}=\mathbf{C}^{k}\binom{x_{1}}{x_{0}}
\end{gathered}
$$

Multistep Methods

- Local accuracy of the leap frog method:

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d t}=\frac{1}{2 \Delta t}\left(\mathbf{x}\left(t_{k+1}\right)-\mathbf{x}\left(t_{k-1}\right)\right)+O\left((\Delta t)^{2}\right)=\mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right) \\
& \mathbf{x}\left(t_{k+1}\right)=\mathbf{x}\left(t_{k-1}\right)+2 \Delta t \mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right)+O\left((\Delta t)^{3}\right)
\end{aligned}
$$

- Stability of the leap frog method:

$$
\frac{d x}{d t}=\lambda x
$$

$$
\begin{gathered}
x_{k+1}=x_{k-1}+2 \Delta t \lambda x_{k} \\
\binom{x_{k+1}}{x_{k}}=\mathbf{C}^{k}\binom{x_{1}}{x_{0}} \\
\mathbf{C}=\left(\begin{array}{cc}
2 \Delta t \lambda & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

What are the eigenvalues of this matrix?

Multistep Methods

- Local accuracy of the leap frog method:

$$
\begin{aligned}
& \frac{d \mathbf{x}}{d t}=\frac{1}{2 \Delta t}\left(\mathbf{x}\left(t_{k+1}\right)-\mathbf{x}\left(t_{k-1}\right)\right)+O\left((\Delta t)^{2}\right)=\mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right) \\
& \mathbf{x}\left(t_{k+1}\right)=\mathbf{x}\left(t_{k-1}\right)+2 \Delta t \mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right)+O\left((\Delta t)^{3}\right)
\end{aligned}
$$

- Stability of the leap frog method:

$$
\frac{d x}{d t}=\lambda x
$$

$$
x_{k+1}=x_{k-1}+2 \Delta t \lambda x_{k}
$$

- Both eigenvalues of \mathbf{C} must be bounded:

$$
\Delta t \lambda
$$

$$
\left|\Delta t \lambda \pm \sqrt{(\Delta t \lambda)^{2}+1}\right| \leq 1
$$

consider when $|\Delta t \lambda| \ll 1$:

$$
|\Delta t \lambda \pm 1| \leq 1
$$

Multistep Methods

- Exercise:
- Should I use the leap frog method to integrate the equations of motion for a mass-spring system?

$$
m \frac{d^{2} x}{d t^{2}}=-k x
$$

- If so, what time steps should I limit myself to?
- If not, what other integrator could I use?

Multistep Methods

- Exercise:
- Should I use the leap frog method to integrate the equations of motion for a mass-spring system?

$$
m \frac{d^{2} x}{d t^{2}}=-k x
$$

- Transform to system of first order ODEs:

$$
\frac{d}{d t}\binom{v}{x}=\left(\begin{array}{cc}
0 & -k / m \\
1 & 0
\end{array}\right)\binom{v}{x}
$$

- Eigenvalues of matrix: $\quad \lambda= \pm i \sqrt{\frac{k}{m}}$
- Since eigenvalues are imaginary, leap frog is stable when:

$$
\Delta t<\sqrt{\frac{m}{k}}
$$

Multistep Methods

- Multistep methods can be implicit as well such as the backward differentiation formulas or Adams-Moulton integrators.
- Example: Backwards differentiation

$$
\mathbf{x}_{k+1}=\frac{4}{3} \mathbf{x}_{k}-\frac{1}{3} \mathbf{x}_{k-1}+\frac{2}{3} \Delta t \mathbf{f}\left(\mathbf{x}_{k+1}, t_{k+1}\right)
$$

- Second order accurate.
- How would you identify the stability bounds?

Numerical Integration

- Consider the definite integral:

$$
\int_{t_{0}}^{t_{f}} \mathbf{f}(\tau) d \tau
$$

- We can define a variable:

$$
\mathbf{x}(t)=\int_{t_{0}}^{t} \mathbf{f}(\tau) d \tau
$$

- which, if $\mathbf{f}(t)$ is continuous, satisfies the differential equation:

$$
\frac{d}{d t} \mathbf{x}(t)=\mathbf{f}(\tau), \quad \mathbf{x}\left(t_{0}\right)=0
$$

- Thus, a definite integral of a known, continuous function can be determined using methods for ODE-IVPs to compute:

$$
\mathbf{x}\left(t_{f}\right)
$$

Numerical Integration

- Consider the definite integral:

$$
\int_{t_{0}}^{t_{f}} \mathbf{f}(\tau) d \tau
$$

- If the discontinuities in $\mathbf{f}(t)$ are known, then ODE-IVP solvers can be used in the domain between the discontinuities too!
- If the discontinuities in $\mathbf{f}(t)$ are unknown, then Monte-Carlo methods (discussed later are a better option).
- This approach is efficient with adaptive time stepping methods because an appropriate spacing between points can be chosen when t changes more or less rapidly with $\mathbf{f}(t)$
- For multi-dimensional integrals, this approach is not as straightforward, however.

Numerical Integration

- One alternative is integration by polynomial interpolation:

$$
\int_{t_{0}}^{t_{f}} \mathbf{f}(\tau) d \tau=\sum_{k=1}^{N} \int_{t_{k-1}}^{t_{k}} \mathbf{f}(\tau) d \tau \approx \sum_{k=1}^{N} \int_{t_{k-1}}^{t_{k}} \mathbf{P}_{k}(\tau) d \tau
$$

- where $\mathbf{P}_{k}(\tau)$ is a polynomial approximation of $\mathbf{f}(\tau)$ in the domain

$$
\tau \in\left[t_{k-1}, t_{k}\right]
$$

- If the size of the domains of integration and the order of the polynomial interpolant can be used to control the accuracy of the integration.
- Example: quadratic interpolation - Simpson's rule:

$$
\begin{gathered}
\mathbf{P}_{k}(\tau)=\mathbf{f}\left(t_{k-1}\right)+\frac{1}{t_{k}-t_{k-1}}\left(\mathbf{f}\left(t_{k}\right)-\mathbf{f}\left(t_{k-1}\right)\right)\left(\tau-t_{k-1}\right) \\
\int_{t_{k-1}}^{t_{k}} \mathbf{P}_{k}(\tau) d \tau=\frac{1}{2}\left(\mathbf{f}\left(t_{k}\right)+\mathbf{f}\left(t_{k-1}\right)\right)\left(t_{k}-t_{k-1}\right)
\end{gathered}
$$

Numerical Integration

- One alternative is integration by polynomial interpolation:

$$
\int_{t_{0}}^{t_{f}} \mathbf{f}(\tau) d \tau=\sum_{k=1}^{N} \int_{t_{k-1}}^{t_{k}} \mathbf{f}(\tau) d \tau \approx \sum_{k=1}^{N} \int_{t_{k-1}}^{t_{k}} \mathbf{P}_{k}(\tau) d \tau
$$

- where $\mathbf{P}_{k}(\tau)$ is a polynomial approximation of $\mathbf{f}(\tau)$ in the domain

$$
\tau \in\left[t_{k-1}, t_{k}\right]
$$

- If the size of the domains of integration and the order of the polynomial interpolant can be used to control the accuracy of the integration.
- Example: quadratic interpolation - Simpson's rule:

$$
\int_{t_{k-1}}^{t_{k}} \mathbf{P}_{k}(\tau) d \tau=\frac{1}{6}\left(\mathbf{f}\left(t_{k}\right)+4 \mathbf{f}\left(\left(t_{k}+t_{k-1}\right) / 2\right)+\mathbf{f}\left(t_{k-1}\right)\right)\left(t_{k}-t_{k-1}\right)
$$

Numerical Integration

- Multidimensional integration:
- Of the sort:

$$
\int_{y_{L}}^{y_{U}} \int_{z_{L}}^{z_{U}} \mathbf{f}(y, z) d y d z
$$

- For any number of dimensions larger than 3 , this is best handled with Monte Carlo methods
- For dimensions less than 3 , this integration can be done with polynomial interpolation.
- Fit the function to a polynomial of a prescribed degree within small regions of the domain of integration.
- Sum integrals over the polynomial fits in each fit region.
- This fails with higher dimensions because the number of fit regions grows exponentially with dimension.
- Example:

Numerical Integration

- Improper integrals:
- Of the sort:

$$
\int_{t_{0}}^{\infty} \mathbf{f}(\tau) d \tau
$$

- Can be split into two domains of integration

$$
\int_{t_{0}}^{\infty} \mathbf{f}(\tau) d \tau=\int_{t_{0}}^{t_{f}} \mathbf{f}(\tau) d \tau+\int_{t_{f}}^{\infty} \mathbf{f}(\tau) d \tau
$$

- The first integral can be handled with ODE-IVP methods or polynomial interpolation
- The second must be handled separately through either:
- transformation onto a finite domain
- or substitution of an asymptotic approximation
- This same idea applies to integrable singularities as well.

Numerical Integration

- Improper integrals:
- Example:

$$
\begin{aligned}
& \int_{0}^{t_{f}} \frac{\cos \tau}{\sqrt{\tau}} d \tau \\
& \approx \int_{0}^{t_{0}} \frac{1-\tau^{2} / 2}{\sqrt{\tau}} d \tau+\int_{t_{0}}^{t_{f}} \frac{\cos \tau}{\sqrt{\tau}} d \tau \\
& \approx 2 t_{0}^{1 / 2}-\frac{1}{5} t_{0}^{5 / 2}+\int_{t_{0}}^{t_{f}} \frac{\cos \tau}{\sqrt{\tau}} d \tau
\end{aligned}
$$

MIT OpenCourseWare
httpV://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

