I0.34: Numerical Methods Applied to Chemical Engineering

Lecture 13:
ODE-IVP and Numerical Integration

Recap

- Constrained optimization
- Method of Lagrange multipliers
- Interior point methods

Recap

- Example:
- minimize: $\exp \left(-x_{1}^{2}-x_{2}^{2}\right)$
- subject to: $x_{1}^{2}+x_{2}^{2}-1=0$
- Can you solve this problem?

$$
\begin{aligned}
\binom{\nabla f-\lambda \nabla c}{c} & =\left(\begin{array}{c}
-2 x_{1} e^{-x_{1}^{2}-x_{2}^{2}}-2 x_{1} \lambda \\
-2 x_{2} e^{-x_{1}^{2}-x_{2}^{2}}-2 x_{2} \lambda \\
x_{1}^{2}+x_{2}^{2}-1
\end{array}\right)=0 \\
\lambda & =e^{-1}
\end{aligned}
$$

Dynamic Models

- Most physical processes are dynamic in nature. This means that first principles models describing those processes can be depicted as differential equations:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & =\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t ; \boldsymbol{\theta}) \\
\mathbf{x}\left(t_{0}\right) & =\mathbf{x}_{0}
\end{aligned}
$$

- $\mathbf{x}(t)$ is often called the state vector and is the set of dynamic variables for which we want to solve.
- t is time
- $\mathbf{u}(t)$ is a time dependent input that we specify
- $\boldsymbol{\theta}$ is a vector of time independent parameters.
- \mathbf{x}_{0} is the initial value of the state vector at

Dynamic Models

- Usually, the solution we are interested in is values of the state vector within some time domain: $t \in\left[t_{0}, t_{f}\right]$
- The initial value problem can be rewritten as:

$$
\begin{aligned}
& \frac{d}{d t} \mathbf{x}(t)=\mathbf{f}(\mathbf{x}(t), t) \quad \forall t \in\left[t_{0}, t_{f}\right] \\
& \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
\end{aligned}
$$

- By convention, the initial time, t_{0}, is often set to be zero.
- Since $\mathbf{f}(\mathbf{x}(t), t)$, can be an arbitrary nonlinear function of the state vector, a closed form, analytical solution rarely exists.
- Numerically, we will solve this equation by finding the state vector at a finite number of points within the time domain.
- We will need to characterize the accuracy and stability of solution methods to these problems.

Dynamic Models

- Higher order differential equations can always be rewritten as systems of first order equations
- Consider the force balance on a driven mass-spring-damper:
$m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=f(t)$
- Let: $v=\frac{d x}{d t}$
- Then: $\frac{d x}{d t}=v$
- And: $m \frac{d v}{d t}+b v+k x=f(t)$

Dynamic Models

- Higher order differential equations can always be rewritten as systems of first order equations
- Consider the force balance on a driven mass-spring-damper:

$$
\frac{d x}{d t}=v
$$

$$
m \frac{d v}{d t}+b v+k x=f(t)
$$

- Collecting a state vector, $\binom{x(t)}{v(t)}$, gives:

$$
\begin{aligned}
\frac{d}{d t} \underbrace{\binom{x(t)}{v(t)}}_{\mathbf{x}} & =\underbrace{\binom{v(t)}{(f(t)-b v(t)-k x(t)) / m}}_{\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \text { or } \mathbf{f}(\mathbf{x}(t), t)} \\
\mathbf{x}\left(t_{0}\right) & =\binom{x\left(t_{0}\right)}{\frac{d x}{d t}\left(t_{0}\right)} .
\end{aligned}
$$

Existence and Uniqueness

- Example:
- Use separation of variables to solve:

$$
\begin{aligned}
& \frac{d x}{d t}=x^{2} \\
& x(0)=x_{0}
\end{aligned}
$$

- Does a solution exist for all times? Is the solution unique?

$$
\frac{d x}{x^{2}}=d t \Rightarrow\left(\frac{1}{x_{0}}-\frac{1}{x(t)}\right)=t \Rightarrow x(t)=\frac{1}{\frac{1}{x_{0}}-t}
$$

Existence and Uniqueness

- Example:
- Use separation of variables to solve:

$$
\begin{aligned}
& \frac{d x}{d t}=x^{3} \\
& x(0)=x_{0}
\end{aligned}
$$

- Does a solution exist for all times? Is the solution unique?

$$
\frac{d x}{x^{3}}=d t \Rightarrow \frac{1}{2}\left(\frac{1}{x_{0}^{2}}-\frac{1}{x(t)^{2}}\right)=t \Rightarrow x(t)^{2}=\frac{1}{\frac{1}{x_{0}^{2}}-2 t}
$$

Existence and Uniqueness

- A unique solution exists if $\mathbf{f}(\mathbf{x}, t)$, is Lipschitz continuous.
- Lipschitz continuity within some domain D means that:

$$
\|\mathbf{f}(\mathbf{x}, t)-\mathbf{f}(\mathbf{z}, t)\|_{p} \leq m\|\mathbf{x}-\mathbf{z}\|_{p} \quad \mathbf{x}, \mathbf{z} \in D
$$

- This is stronger than regular continuity:

$$
\lim _{\mathbf{x} \rightarrow \mathbf{z}}\|\mathbf{f}(\mathbf{x}, t)-\mathbf{f}(\mathbf{z}, t)\|_{p} \rightarrow 0
$$

- For existence and uniqueness to be guaranteed, $\mathbf{f}(\mathbf{x}, t)$, needs to be Lipschitz continuous over the whole domain of \mathbf{x} and in the time domain of interest.
- Examples:
- Is $f(x)=x$ continuous? Is it uniformly Lipschitz cont.?
- Is $f(x)=x^{2}$ continuous? Is it uniformly Lipschitz cont.?

Finite Differences

- One way to solve differential equations numerical is to approximate the derivatives and turn the differential equation into a sequence of algebraic equations.
- Finite differences are a typical method for this approximation:
- Forward difference:

$$
\frac{d}{d t} \mathbf{x}(t) \approx \frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t))
$$

- Backward difference:

$$
\frac{d}{d t} \mathbf{x}(t) \approx \frac{1}{\Delta t}(\mathbf{x}(t)-\mathbf{x}(t-\Delta t))
$$

- Central difference:

$$
\frac{d}{d t} \mathbf{x}(t) \approx \frac{1}{2 \Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t-\Delta t))
$$

Finite Differences

- One way to solve differential equations numerical is to approximate the derivatives and turn the differential equation into a sequence of algebraic equations.
- Finite differences are a typical method for this approximation:
- Forward difference:

$$
\frac{d}{d t} \mathbf{x}(t) \approx \frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t))
$$

- Backward difference:

$$
\frac{d}{d t} \mathbf{x}(t) \approx \frac{1}{\Delta t}(\mathbf{x}(t)-\mathbf{x}(t-\Delta t))
$$

- Central difference:

$$
\frac{d}{d t} \mathbf{x}(t) \approx \frac{1}{2 \Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t-\Delta t))
$$

Finite Differences

- Taylor expansions can be used to evaluate the accuracy of finite difference approximations:

$$
\begin{aligned}
& \mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{2!} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)+\frac{(\Delta t)^{3}}{3!} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{4}\right), \\
& \mathbf{x}(t-\Delta t)=\mathbf{x}(t)-\Delta t \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{2!} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)-\frac{(\Delta t)^{3}}{3!} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{4}\right),
\end{aligned}
$$

- Forward difference:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & \approx \frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t)) \\
& =\frac{1}{\Delta t}\left(\mathbf{x}(t)+\Delta t \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{2!} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)+\frac{(\Delta t)^{3}}{3!} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{4}\right)-\mathbf{x}(t)\right) \\
& =\frac{d}{d t} \mathbf{x}(t)+\frac{\Delta t}{2} d^{2} d t^{2} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{6} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{3}\right),
\end{aligned}
$$

- Central difference:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) \approx & \frac{1}{2 \Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t-\Delta t)) \\
= & \frac{1}{2 \Delta t}\left(\mathbf{x}(t)+\Delta t \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{2} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)+\frac{(\Delta t)^{3}}{3!} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{4}\right)\right. \\
& \left.-\left(\mathbf{x}(t)-\Delta t \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{2!} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)-\frac{(\Delta t)^{3}}{3!} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{4}\right)\right)\right) \\
= & \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{6} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{3}\right) .
\end{aligned}
$$

Finite Differences

- The order of accuracy of a finite difference approximation is given by the leading order error in the Taylor expansion.
- For example:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & \approx \frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t)) \\
& =\frac{1}{\Delta t}\left(\mathbf{x}(t)+\Delta t \frac{d}{d t} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{2!} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)+\frac{(\Delta t)^{3}}{3!} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{4}\right)-\mathbf{x}(t)\right) \\
& =\frac{d}{d t} \mathbf{x}(t)+\frac{\Delta t}{2} \frac{d^{2}}{d t^{2}} \mathbf{x}(t)+\frac{(\Delta t)^{2}}{6} \frac{d^{3}}{d t^{3}} \mathbf{x}(t)+\mathrm{O}\left((\Delta t)^{3}\right),
\end{aligned}
$$

- is said to be a first order accurate approximation.
- If the error in the approximation is: $E(\Delta t) \sim(\Delta t)^{p}$, then the approximation is pth-order accurate
- The order of accuracy can be determined by calculating the error in the solution method after one step and plotting:

$$
\log |E(\Delta t)| \approx \log c+p \log \Delta t
$$

Explicit Methods for IVPs

- Explicit (or Forward) Euler method:
- Approximate the derivative with forward differences:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & =\mathbf{f}(\mathbf{x}(t), t) \\
\frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t)) & \approx \mathbf{f}(\mathbf{x}(t), t) \\
\mathbf{x}(t+\Delta t) & \approx \mathbf{x}(t)+(\Delta t) \mathbf{f}(\mathbf{x}(t), t)
\end{aligned}
$$

- This gives a sequence of approximations for the solution at different time points:

$$
\begin{aligned}
\mathbf{x}\left(t_{0}\right) & =\mathbf{x}_{0} \\
\mathbf{x}\left(t_{0}+\Delta t\right) & \approx \mathbf{x}\left(t_{0}\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)=\mathbf{x}_{0}+(\Delta t) \mathbf{f}\left(\mathbf{x}_{0}, t_{0}\right) \\
\mathbf{x}\left(t_{0}+2 \Delta t\right) & \approx \mathbf{x}\left(t_{0}+\Delta t\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}+\Delta t\right), t_{0}+\Delta t\right) \\
\mathbf{x}\left(t_{0}+3 \Delta t\right) & \approx \mathbf{x}\left(t_{0}+2 \Delta t\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}+2 \Delta t\right), t_{0}+2 \Delta t\right) \\
& \vdots \\
\mathbf{x}\left(t_{0}+(k+1) \Delta t\right) & \approx \mathbf{x}\left(t_{0}+k \Delta t\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}+k \Delta t\right), t_{0}+k \Delta t\right)
\end{aligned}
$$

Explicit Methods for IVPs

- Explicit Euler method:
- Approximate the derivative with forward differences:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & =\mathbf{f}(\mathbf{x}(t), t) \\
\frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t)) & \approx \mathbf{f}(\mathbf{x}(t), t) \\
\mathbf{x}(t+\Delta t) & \approx \mathbf{x}(t)+(\Delta t) \mathbf{f}(\mathbf{x}(t), t)
\end{aligned}
$$

- This gives a sequence of approximations for the solution at different time points:

$$
\begin{aligned}
\mathbf{x}\left(t_{0}\right) & =\mathbf{x}_{0} \\
\mathbf{x}\left(t_{0}+\Delta t\right) & \approx \mathbf{x}\left(t_{0}\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)=\mathbf{x}_{0}+(\Delta t) \mathbf{f}\left(\mathbf{x}_{0}, t_{0}\right) \\
\mathbf{x}\left(t_{0}+2 \Delta t\right) & \approx \mathbf{x}\left(t_{0}+\Delta t\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}+\Delta t\right), t_{0}+\Delta t\right) \\
\mathbf{x}\left(t_{0}+3 \Delta t\right) & \approx \mathbf{x}\left(t_{0}+2 \Delta t\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}+2 \Delta t\right), t_{0}+2 \Delta t\right) \\
& \vdots \\
\mathbf{x}\left(t_{0}+(k+1) \Delta t\right) & \approx \mathbf{x}\left(t_{0}+k \Delta t\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}+k \Delta t\right), t_{0}+k \Delta t\right)
\end{aligned}
$$

Explicit Methods for IVPs

- Explicit Euler method:
- Approximate the derivative with forward differences:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & =\mathbf{f}(\mathbf{x}(t), t) \\
\frac{1}{\Delta t}(\mathbf{x}(t+\Delta t)-\mathbf{x}(t)) & \approx \mathbf{f}(\mathbf{x}(t), t) \\
\mathbf{x}(t+\Delta t) & \approx \mathbf{x}(t)+(\Delta t) \mathbf{f}(\mathbf{x}(t), t)
\end{aligned}
$$

- This gives a sequence of approximations for the solution at different time points:

$$
\begin{array}{rlr}
\mathbf{x}\left(t_{0}\right) & =\mathbf{x}_{0} & \\
\mathbf{x}\left(t_{1}\right) & \approx \mathbf{x}\left(t_{0}\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) & \\
\mathbf{x}\left(t_{2}\right) & \approx \mathbf{x}\left(t_{1}\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{1}\right), t_{1}\right) & t_{k}=t_{0}+k \Delta t \\
\mathbf{x}\left(t_{3}\right) & \approx \mathbf{x}\left(t_{2}\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{2}\right), t_{2}\right) & k=0,1,2, \ldots \\
& \vdots & \\
\mathbf{x}\left(t_{k+1}\right) & \approx \mathbf{x}\left(t_{k}\right)+(\Delta t) \mathbf{f}\left(\mathbf{x}\left(t_{k}\right), t_{k}\right) &
\end{array}
$$

Explicit Methods for IVPs

- Explicit Euler method:

```
\(\mathrm{f}=\) @(x,t) \% Does something
t0 \(=0\);
\(\mathrm{tf}=1\);
\(d t=0.01 ;\)
\(x 0=\%\) Initial condition
\(\mathrm{t}=[\mathrm{t} 0: \mathrm{dt}: \mathrm{tf}]\)
\(\mathrm{x}=\) zeros( length( x 0 ), length( t\()\) );
\(x(:, 1\) ) = x0;
for \(i=2\) : length( \(t\) )
```

$x(:, i)=x(:, i-1)+d t * f(x(:, i-1), t(i-1))$;
end;

Explicit Methods for IVPs

- Explicit methods are termed explicit because the algebraic approximation to the IVP does not require a complicated solution method.
- Higher order explicit methods can be derived by incorporating information about the solution at intermediate or past time points.
- There are innumerable different methods by which this can be done. Some are more accurate, others are more stable, others still require fewer function evaluations.
- Example: explicit Runge-Kutta method

$$
\begin{aligned}
\mathbf{x}(t+\Delta t / 2) & =\mathbf{x}(t)+\frac{\Delta t}{2} \mathbf{f}(\mathbf{x}(t), t) \\
\mathbf{x}(t+\Delta t) & =\mathbf{x}(t)+(\Delta t) \mathbf{f}(\mathbf{x}(t+\Delta t / 2), t+\Delta t / 2)
\end{aligned}
$$

- uses information at the midpoint of the step
- requires twice as many function evaluations

Explicit Methods for IVPs

- Example:

$$
\frac{d y}{d t}=-y, \quad y(0)=1
$$

$$
y(t)=e^{-t}
$$

- Forward Euler:

$$
\begin{aligned}
& y(t+\Delta t)=y(t)-\Delta t y(t)=(1-\Delta t) y(t) \\
& y(\Delta t)=1-\Delta t
\end{aligned}
$$

- Midpoint:

$$
\begin{aligned}
& y(t+\Delta t / 2)=y(t)-\frac{\Delta t}{2} y(t)=\left(1-\frac{\Delta t}{2}\right) y(t) \\
& y(t+\Delta t)=y(t)-\Delta t y(t+\Delta t / 2)=\left[1-\Delta t\left(1-\frac{\Delta t}{2}\right)\right] y(t) \\
& y(\Delta t)=1-\Delta t+\frac{(\Delta t)^{2}}{2}
\end{aligned}
$$

Explicit Methods for IVPs

- Example:

$$
\frac{d y}{d t}=-y, \quad y(0)=1 \quad y(t)=e^{-t}
$$

MIT OpenCourseWare
httpV://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

