10.34: Numerical Methods Applied to Chemical Engineering

Lecture II:
Unconstrained Optimization
Newton-Raphson and trust region methods

Recap

- Optimization
- Steepest descent

Recap

- Method of steepest decent: $\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)$
- Estimating an optimal α_{i} with a Taylor expansion:
$f\left(\mathbf{x}_{i+1}\right)=f\left(\mathbf{x}_{i}\right)-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)+\frac{1}{2} \alpha_{i}^{2} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)+\ldots$
- This is quadratic in α_{i}, so find the critical point:

$$
\begin{aligned}
& \alpha_{i}=\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)}{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)}
\end{aligned}
$$

Recap

$$
\begin{gathered}
m \ddot{\mathbf{x}}=-\gamma \dot{\mathbf{x}}+\mathbf{F} \\
m \ddot{\mathbf{x}}=-\gamma \dot{\mathbf{x}}-\nabla U
\end{gathered}
$$

Recap

- Method of steepest decent: $\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)$

Recap

- Method of steepest decent: $\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)$

Unconstrained Optimization

- Conjugate gradient method:
- Consider the minimization of: $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}$

$$
\begin{aligned}
& \mathbf{g}(\mathbf{x})=\nabla f(\mathbf{x})=\mathbf{A} \mathbf{x}-\mathbf{b} \\
& \mathbf{H}(\mathbf{x})=\mathbf{A}
\end{aligned}
$$

- This has a minimum when?
- $\mathbf{A x}=\mathbf{b}$
- the Hessian, A, is symmetric, positive definite
- Iterative method: $\mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha_{i} \mathbf{p}_{i}$
- \mathbf{p}_{i} is a descent dir. but not necessarily the steepest
- Let's determine the optimal α_{i} for a given \mathbf{p}_{i}

Unconstrained Optimization

- Conjugate gradient method

$$
f\left(\mathbf{x}_{i+1}\right)=f\left(\mathbf{x}_{i}\right)+\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{p}_{i}+\frac{1}{2} \alpha_{i}^{2} \mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}
$$

- $f\left(\mathbf{x}_{i+1}\right)$ is quadratic in α_{i}.
- $f\left(\mathbf{x}_{i+1}\right)$ is minimized when $\alpha_{i}=-\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{p}_{i}}{\mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}_{i}}$
- For a given direction \mathbf{p}_{i} there is an optimal step size α_{i}
- How can we choose the optimal direction?
- $f\left(\mathbf{x}_{i+1}\right)$ is already minimized along $\mathbf{p}_{i}: \mathbf{g}\left(\mathbf{x}_{i+1}\right)^{T} \mathbf{p}_{i}=0$
- Can this hold for $f\left(\mathbf{x}_{i+2}\right)$ also?
- Let $\mathbf{g}\left(\mathbf{x}_{i+2}\right)^{T} \mathbf{p}_{i}=0$, then:

$$
\left[\mathbf{A}\left(\mathbf{x}_{i+1}+\alpha_{i+1} \mathbf{p}_{i+1}\right)-\mathbf{b}\right]^{T} \mathbf{p}_{i}=0 \Rightarrow \mathbf{p}_{i+1}^{T} \mathbf{A} \mathbf{p}_{i}=0
$$

Unconstrained Optimization

- Conjugate gradient method:

$$
f\left(\mathbf{x}_{i+1}\right)=f\left(\mathbf{x}_{i}\right)+\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{p}_{i}+\frac{1}{2} \alpha_{i}^{2} \mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}
$$

- $f\left(\mathbf{x}_{i+1}\right)$ is quadratic in α_{i}.
- $f\left(\mathbf{x}_{i+1}\right)$ is minimized when $\alpha_{i}=-\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{p}_{i}}{\mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}_{i}}$
- For a given direction \mathbf{p}_{i} there is an optimal step size α_{i}
- How can we choose the optimal direction?
- $f\left(\mathbf{x}_{i+1}\right)$ is already minimized along $\mathbf{p}_{i}: \mathbf{g}\left(\mathbf{x}_{i+1}\right)^{T} \mathbf{p}_{i}=0$
- Can this hold for $f\left(\mathbf{x}_{i+2}\right)$ also?
- Let $\mathbf{g}\left(\mathbf{x}_{i+2}\right)^{T} \mathbf{p}_{i}=0$, then:

$$
\mathbf{p}_{i+1}=-\mathbf{g}\left(\mathbf{x}_{i+1}\right)+\beta_{i+1} \mathbf{p}_{i}, \quad \beta_{i+1}=\frac{\mathbf{g}\left(\mathbf{x}_{i+1}\right)^{T} \mathbf{A} \mathbf{p}_{i}}{\mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}_{i}}
$$

Unconstrained Optimization

- Method of steepest decent/conjugate gradient:
- Example: $f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2} \quad \mathbf{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & 10\end{array}\right), \mathbf{b}=0$
- Contours for the function: $\alpha_{i}=0.015$ in SD

Unconstrained Optimization

- Conjugate gradient method:
- Used to solve linear equations with $O(N)$ iterations
- Requires only the ability to compute the product:
- The actual matrix is never needed. We only need to compute its action on different vectors, Ay!
- Only for symmetric, positive definite matrices.
- More sophisticated minimization methods exist for arbitrary matrices.
- Optimization applied to linear equations is the state-of-the-art for solutions of linear equations.

Newton-Raphson

- Finding local minima in unconstrained optimization problems involve solutions of the equation:

$$
\mathbf{g}(\mathbf{x})=\nabla f(\mathbf{x})=0
$$

- at minima in $f(\mathbf{x})$
- If we begin close enough to a minimum, can we expect the NR method to converge to that minimum?
- Yes! NR is locally convergent.
- Accuracy of the iterates will improve quadratically!
- Newton-Raphson iteration:
- What is the Jacobian of $\mathbf{g}(\mathbf{x})$?

Unconstrained Optimization

- Method of steepest decent/Newton-Raphson:
- Example: $f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function: $\alpha_{i}=0.015$

Unconstrained Optimization

- Method of steepest decent/Newton-Raphson:
- Example: $\log f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function: $\alpha_{i}=\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)}{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)}$

Newton-Raphson

- Compare:
- Optimized steepest decent:
- $\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)$ with $\alpha_{i}=\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)}{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)}$
- Newton-Raphson:
- $\mathbf{x}_{i+1}=\mathbf{x}_{i}-\mathbf{H}\left(\mathbf{x}_{i}\right)^{-1} \mathbf{g}\left(\mathbf{x}_{i}\right)$
- What is the difference?
- What are the strengths of Newton-Raphson?
- What are the weaknesses of Newton-Raphson?
- What are the strengths of steepest descent?
- What are the weaknesses of steepest decent?

Trust-Region Methods

- Both Newton-Raphson and the optimized steepest descent methods assume the objective function can be described locally by a quadratic function.

- That quadratic approximation may be good or bad

Trust-Region Methods

- Both Newton-Raphson and the optimized steepest descent methods assume the objective function can be described locally by a quadratic function.

- That quadratic approximation may be good or bad

Trust-Region Methods

- Trust region methods choose between the NewtonRaphson direction when the quadratic approximation is good and the steepest decent direction when it is not.

- This choice is based on whether the Newton-Raphson step is too large.

Trust-Region Methods

- Newton step: $\mathbf{d}_{i}^{N R}=-\mathbf{H}\left(\mathbf{x}_{i}\right)^{-1} \mathbf{g}\left(\mathbf{x}_{i}\right)$

Newton-Raphson Steepest decent

- Steepest decent: $\mathbf{d}_{i}^{S D}=-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)$
- If $\left\|\mathbf{d}_{i}^{N R}\right\|_{2}<R_{i}$ and $f\left(\mathbf{x}_{i}+\mathbf{d}_{i}^{N R}\right)<f\left(\mathbf{x}_{i}\right)$
- Take the Newton-Raphson step

- Else
- Take a step in the steepest descent direction
- If $\left\|\mathbf{d}_{i}^{S D}\right\|_{2}<R_{i}$ and $f\left(\mathbf{x}_{i}+\mathbf{d}_{i}^{S D}\right)<f\left(\mathbf{x}_{i}\right)$ with optimal step size
- Take the optimal steepest descent
- Else step to the trust boundary using:

$$
\alpha_{i}=R_{i} /\left\|\mathbf{g}\left(\mathbf{x}_{i}\right)\right\|_{2}
$$

Trust-Region Methods

- The size of the trust region can be set arbitrarily initially.
- The trust region grows or shrinks depending on which of the two steps we choose.
- If the Newton-Raphson step was chosen:
- The quadratic approximation has minimum value:

$$
\phi=f\left(\mathbf{x}_{i}\right)+\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}_{i}+\frac{1}{2} \mathbf{d}_{i}^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{d}_{i}
$$

- GROW the trust-radius when $\phi>f\left(\mathbf{x}_{i}+\mathbf{d}_{i}\right)$, because the function was smaller than predicted
- otherwise, SHRINK the trust-radius.
- If the steepest descent step was chosen, keep the trust radius the same.

Trust-Region Methods

- What is a good value of the trust-region radius?
- MATLAB uses one initially!
- Variations on the trust-region method exist as well.
- MATLAB uses the dog-leg step instead of the optimal steepest descent step:

Newton-Raphson
Optimal steepest decent
Dog-leg step

Unconstrained Optimization

- Method of steepest decent/Newton-Raphson/Trust-Region:
- Example: $\log f(x)=\left(x_{1}^{2}+10 x_{2}^{2}\right)^{2}$
- Contours for the function: $\alpha_{i}=\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)}{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)}$

Unconstrained Optimization

- Method of steepest decent/Newton-Raphson/Trust-Region:
- Example: $\log f(x)=\left(x_{1}^{2}+10 x_{2}^{2}\right)^{2}$
- Contours for the function: $\alpha_{i}=\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)}{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)}$

MIT OpenCourseWare
httpV://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

