10.34: Numerical Methods Applied to Chemical Engineering

Lecture 11: Unconstrained Optimization Newton-Raphson and trust region methods

- Optimization
- Steepest descent

- Method of steepest decent: $\mathbf{x}_{i+1} = \mathbf{x}_i lpha_i \mathbf{g}(\mathbf{x}_i)$
 - Estimating an optimal α_i with a Taylor expansion:

$$f(\mathbf{x}_{i+1}) = f(\mathbf{x}_i) - \alpha_i \mathbf{g}(\mathbf{x}_i)^T \mathbf{g}(\mathbf{x}_i) + \frac{1}{2} \alpha_i^2 \mathbf{g}(\mathbf{x}_i)^T \mathbf{H}(\mathbf{x}_i) \mathbf{g}(\mathbf{x}_i) + \dots$$

• This is quadratic in $lpha_i$, so find the critical point:

3

$$m\mathbf{\ddot{x}} = -\gamma\mathbf{\dot{x}} + \mathbf{F}$$
$$m\mathbf{\ddot{x}} = -\gamma\mathbf{\dot{x}} - \nabla U$$

• Method of steepest decent: $\mathbf{x}_{i+1} = \mathbf{x}_i - \alpha_i \mathbf{g}(\mathbf{x}_i)$

• Method of steepest decent: $\mathbf{x}_{i+1} = \mathbf{x}_i - \alpha_i \mathbf{g}(\mathbf{x}_i)$

- Conjugate gradient method:
 - Consider the minimization of: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} \mathbf{b}^T \mathbf{x}$ $\mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$ $\mathbf{H}(\mathbf{x}) = \mathbf{A}$
 - This has a minimum when?
 - Ax = b
 - the Hessian, A, is symmetric, positive definite
 - Iterative method: $\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{p}_i$
 - \mathbf{p}_i is a descent dir. but not necessarily the steepest
 - Let's determine the optimal $lpha_i$ for a given \mathbf{p}_i

• Conjugate gradient method $f(\mathbf{x}_{i+1}) = f(\mathbf{x}_i) + \alpha_i \mathbf{g}(\mathbf{x}_i)^T \mathbf{p}_i + \frac{1}{2} \alpha_i^2 \mathbf{p}_i^T \mathbf{A} \mathbf{p}$

•
$$f(\mathbf{x}_{i+1})$$
 is quadratic in α_i .
• $f(\mathbf{x}_{i+1})$ is minimized when $\alpha_i = -\frac{\mathbf{g}(\mathbf{x}_i)^T \mathbf{p}_i}{\mathbf{p}_i^T \mathbf{A} \mathbf{p}_i}$

- For a given direction $\, {f p}_i$ there is an optimal step size $\, lpha_i$
- How can we choose the optimal direction?
 - $f(\mathbf{x}_{i+1})$ is already minimized along $\mathbf{p}_i : \mathbf{g}(\mathbf{x}_{i+1})^T \mathbf{p}_i = 0$
 - Can this hold for $f(\mathbf{x}_{i+2})$ also?
 - Let $\mathbf{g}(\mathbf{x}_{i+2})^T \mathbf{p}_i = 0$, then:

$$\left[\mathbf{A}\left(\mathbf{x}_{i+1} + \alpha_{i+1}\mathbf{p}_{i+1}\right) - \mathbf{b}\right]^T \mathbf{p}_i = 0 \Rightarrow \mathbf{p}_{i+1}^T \mathbf{A}\mathbf{p}_i = 0$$

• Conjugate gradient method: $f(\mathbf{x}_{i+1}) = f(\mathbf{x}_i) + \alpha_i \mathbf{g}(\mathbf{x}_i)^T \mathbf{p}_i + \frac{1}{2} \alpha_i^2 \mathbf{p}_i^T \mathbf{A} \mathbf{p}$

•
$$f(\mathbf{x}_{i+1})$$
 is quadratic in α_i .
• $f(\mathbf{x}_{i+1})$ is minimized when $\alpha_i = -\frac{\mathbf{g}(\mathbf{x}_i)^T \mathbf{p}_i}{\mathbf{p}_i^T \mathbf{A} \mathbf{p}_i}$

- For a given direction $\, {f p}_i$ there is an optimal step size $\, lpha_i$
- How can we choose the optimal direction?
 - $f(\mathbf{x}_{i+1})$ is already minimized along $\mathbf{p}_i : \mathbf{g}(\mathbf{x}_{i+1})^T \mathbf{p}_i = 0$

9

• Can this hold for $f(\mathbf{x}_{i+2})$ also?

• Let
$$\mathbf{g}(\mathbf{x}_{i+2})^T \mathbf{p}_i = 0$$
, then:
 $\mathbf{p}_{i+1} = -\mathbf{g}(\mathbf{x}_{i+1}) + \beta_{i+1}\mathbf{p}_i, \quad \beta_{i+1} = \frac{\mathbf{g}(\mathbf{x}_{i+1})^T \mathbf{A} \mathbf{p}_i}{\mathbf{p}_i^T \mathbf{A} \mathbf{p}_i}$

- Method of steepest decent/conjugate gradient:
 - Example: $f(\mathbf{x}) = x_1^2 + 10x_2^2$ $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 10 \end{pmatrix}, \mathbf{b} = 0$
 - Contours for the function: $\alpha_i = 0.015$ in SD

10

- Conjugate gradient method:
 - Used to solve linear equations with O(N) iterations
 - Requires only the ability to compute the product:
 - The actual matrix is never needed. We only need to compute its action on different vectors, Ay!
 - Only for symmetric, positive definite matrices.
- More sophisticated minimization methods exist for arbitrary matrices.
- Optimization applied to linear equations is the state-ofthe-art for solutions of linear equations.

Newton-Raphson

• Finding local minima in unconstrained optimization problems involve solutions of the equation:

 $\mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x}) = 0$

- at minima in $f(\mathbf{x})$
- If we begin close enough to a minimum, can we expect the NR method to converge to that minimum?
 - Yes! NR is locally convergent.
 - Accuracy of the iterates will improve quadratically!
- Newton-Raphson iteration:

• What is the Jacobian of $\mathbf{g}(\mathbf{x})$?

- Method of steepest decent/Newton-Raphson:
 - Example: $f(\mathbf{x}) = x_1^2 + 10x_2^2$
 - Contours for the function: $\alpha_i = 0.015$

- Method of steepest decent/Newton-Raphson:
 - Example: $\log f(\mathbf{x}) = x_1^2 + 10x_2^2$
 - Contours for the function: $\alpha_i = \frac{\mathbf{g}(\mathbf{x}_i)^T \mathbf{g}(\mathbf{x}_i)}{\mathbf{g}(\mathbf{x}_i)^T \mathbf{H}(\mathbf{x}_i) \mathbf{g}(\mathbf{x}_i)}$

Newton-Raphson

- Compare:
 - Optimized steepest decent:

•
$$\mathbf{x}_{i+1} = \mathbf{x}_i - \alpha_i \mathbf{g}(\mathbf{x}_i)$$
 with $\alpha_i =$

$$= \frac{\mathbf{g}(\mathbf{x}_i)^T \mathbf{g}(\mathbf{x}_i)}{\mathbf{g}(\mathbf{x}_i)^T \mathbf{H}(\mathbf{x}_i) \mathbf{g}(\mathbf{x}_i)}$$

- Newton-Raphson:
 - $\mathbf{x}_{i+1} = \mathbf{x}_i \mathbf{H}(\mathbf{x}_i)^{-1}\mathbf{g}(\mathbf{x}_i)$
- What is the difference?
- What are the strengths of Newton-Raphson?
- What are the weaknesses of Newton-Raphson?
- What are the strengths of steepest descent?
- What are the weaknesses of steepest decent?

 Both Newton-Raphson and the optimized steepest descent methods assume the objective function can be described locally by a quadratic function.

 \mathcal{X}_{i}

 x_{i+1}

 Both Newton-Raphson and the optimized steepest descent methods assume the objective function can be described locally by a quadratic function.

• That quadratic approximation may be good or bad

• Trust region methods choose between the Newton-Raphson direction when the quadratic approximation is good and the steepest decent direction when it is not.

 This choice is based on whether the Newton-Raphson step is too large.

- Newton step: $\mathbf{d}_i^{NR} = -\mathbf{H}(\mathbf{x}_i)^{-1}\mathbf{g}(\mathbf{x}_i)$
- Steepest decent: $\mathbf{d}_i^{SD} = -\alpha_i \mathbf{g}(\mathbf{x}_i)$
- If $\|\mathbf{d}_i^{NR}\|_2 < R_i$ and $f(\mathbf{x}_i + \mathbf{d}_i^{NR}) < f(\mathbf{x}_i)$
 - Take the Newton-Raphson step
- Else
 - Take a step in the steepest descent direction
 - If $\|\mathbf{d}_i^{SD}\|_2 < R_i$ and $f(\mathbf{x}_i + \mathbf{d}_i^{SD}) < f(\mathbf{x}_i)$ with optimal step size
 - Take the optimal steepest descent
 - Else step to the trust boundary using: $\alpha_i = R_i / \| \mathbf{g}(\mathbf{x}_i) \|_2$

Newton-Raphson Steepest decent

- The size of the trust region can be set arbitrarily initially.
- The trust region grows or shrinks depending on which of the two steps we choose.
- If the Newton-Raphson step was chosen:
 - The quadratic approximation has minimum value: $\phi = f(\mathbf{x}_i) + \mathbf{g}(\mathbf{x}_i)^T \mathbf{d}_i + \frac{1}{2} \mathbf{d}_i^T \mathbf{H}(\mathbf{x}_i) \mathbf{d}_i$
 - GROW the trust-radius when $\phi > f(\mathbf{x}_i + \mathbf{d}_i)$, because the function was smaller than predicted
 - otherwise, SHRINK the trust-radius.
- If the steepest descent step was chosen, keep the trust radius the same.

- What is a good value of the trust-region radius?
 - MATLAB uses one initially!
- Variations on the trust-region method exist as well.
 - MATLAB uses the dog-leg step instead of the optimal steepest descent step:

Newton-Raphson Optimal steepest decent Dog-leg step

- Method of steepest decent/Newton-Raphson/Trust-Region:
 - Example: $\log f(x) = (x_1^2 + 10x_2^2)^2$
 - Contours for the function: $\alpha_i = \frac{\mathbf{g}(\mathbf{x}_i)^T \mathbf{g}(\mathbf{x}_i)}{\mathbf{g}(\mathbf{x}_i)^T \mathbf{H}(\mathbf{x}_i) \mathbf{g}(\mathbf{x}_i)}$

- Method of steepest decent/Newton-Raphson/Trust-Region:
 - Example: $\log f(x) = (x_1^2 + 10x_2^2)^2$

Contours for the function: $\alpha_i = \frac{\mathbf{g}(\mathbf{x}_i)^T \mathbf{g}(\mathbf{x}_i)}{\mathbf{g}(\mathbf{x}_i)^T \mathbf{H}(\mathbf{x}_i) \mathbf{g}(\mathbf{x}_i)}$

10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: http•://ocw.mit.edu/terms.