
10.34: Numerical Methods 
Applied to 

Chemical Engineering

Lecture 11: 
Unconstrained Optimization

Newton-Raphson and trust region methods
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Recap

• Optimization

• Steepest descent
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• Method of steepest decent:

• Estimating an optimal       with a Taylor expansion:

• This is quadratic in     , so find the critical point: 
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Recap
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• Method of steepest decent:
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• Method of steepest decent:
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xi+1 = xi � ↵ig(xi)
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Unconstrained Optimization
• Conjugate gradient method:

•  Consider the minimization of:  

• This has a minimum when?

•  

• the Hessian,     , is symmetric, positive definite

• Iterative method:

•       is a descent dir. but not necessarily the steepest

• Let’s determine the optimal      for a given  
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Unconstrained Optimization
• Conjugate gradient method

•             is quadratic in       .

•             is minimized when

• For a given direction       there is an optimal step size

• How can we choose the optimal direction?

•             is already minimized along     :

• Can this hold for               also? 

• Let                             , then:

8

1
f(xi+1) = f(xi) + ↵ig(xi)

T
pi + ↵2

ip
T
i Ap

2
f(xi+1) ↵i

f(xi+1)
g(x

↵i = � i)Tpi

p

T
i Api

pi ↵i

f(xi+1) pi g(xi+1)
T
pi = 0

f(xi+2)

g(xi+2)
T
pi = 0

[A (xi+1 + ↵i+1pi+1)� b]T pi = 0 ) p

T
i+1Api = 0



Unconstrained Optimization
• Conjugate gradient method:

•             is quadratic in       .

•             is minimized when

• For a given direction       there is an optimal step size

• How can we choose the optimal direction?

•             is already minimized along     :

• Can this hold for               also? 

• Let                             , then:
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Unconstrained Optimization
• Method of steepest decent/conjugate gradient:

• Example:

• Contours for the function:                      in SD
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Unconstrained Optimization

• Conjugate gradient method:

• Used to solve linear equations with           iterations

• Requires only the ability to compute the product:

• The actual matrix is never needed.  We only need 
to compute its action on different vectors,       !

• Only for symmetric, positive definite matrices.

• More sophisticated minimization methods exist for 
arbitrary matrices.

• Optimization applied to linear equations is the state-of-
the-art for solutions of linear equations.
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Newton-Raphson
• Finding local minima in unconstrained optimization 

problems involve solutions of the equation:

• at minima in

• If we begin close enough to a minimum, can we expect 
the NR method to converge to that minimum?

• Yes! NR is locally convergent.

• Accuracy of the iterates will improve quadratically!

• Newton-Raphson iteration:

• What is the Jacobian of         ?
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• Method of steepest decent/Newton-Raphson:

• Example:

• Contours for the function:                     
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Unconstrained Optimization

f(x) = x
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• Method of steepest decent/Newton-Raphson:

• Example:

• Contours for the function:                     
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Unconstrained Optimization
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Newton-Raphson
• Compare:

• Optimized steepest decent:

•                                    with

• Newton-Raphson:

•  

• What is the difference?

• What are the strengths of Newton-Raphson?

• What are the weaknesses of Newton-Raphson?

• What are the strengths of steepest descent?

• What are the weaknesses of steepest decent?
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�1g(xi)

g(xi)Tg(xi)↵i =
g(xi)TH(xi)g(xi)

xi+1 = xi � ↵ig(xi)



Trust-Region Methods
• Both Newton-Raphson and the optimized steepest 

descent methods assume the objective function can be 
described locally by a quadratic function.

• That quadratic approximation may be good or bad
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Trust-Region Methods
• Both Newton-Raphson and the optimized steepest 

descent methods assume the objective function can be 
described locally by a quadratic function.

• That quadratic approximation may be good or bad
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Trust-Region Methods
• Trust region methods choose between the Newton-

Raphson direction when the quadratic approximation is 
good and the steepest decent direction when it is not.

• This choice is based on whether the Newton-Raphson 
step is too large.
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• Newton step: 

• Steepest decent:

• If                         and 

• Take the Newton-Raphson step 

• Else

• Take a step in the steepest descent direction

• If                          and                                      with 
optimal step size

• Take the optimal steepest descent

• Else step to the trust boundary using: 

Trust-Region Methods
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• The size of the trust region can be set arbitrarily initially.

• The trust region grows or shrinks depending on which of 
the two steps we choose.

• If the Newton-Raphson step was chosen:

• The quadratic approximation has minimum value:

• GROW the trust-radius when                            , 
because the function was smaller than predicted

• otherwise, SHRINK the trust-radius.

• If the steepest descent step was chosen, keep the trust 
radius the same.

Trust-Region Methods
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• What is a good value of the trust-region radius?

• MATLAB uses one initially!

• Variations on the trust-region method exist as well.

• MATLAB uses the dog-leg step instead of the optimal 
steepest descent step:

Trust-Region Methods

Optimal steepest decent
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• Method of steepest decent/Newton-Raphson/Trust-Region:

• Example:

• Contours for the function:                     
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Unconstrained Optimization
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• Method of steepest decent/Newton-Raphson/Trust-Region:

• Example:

• Contours for the function:                     
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Unconstrained Optimization
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