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Optimization

• Problems of the sort:

•        : objective function, cost function, energy

• “metric to compare alternatives”

•    : “design alternatives”

•    : feasible set

• Maximization of          is just minimization of
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Optimization
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Optimization
• Goal: find

•      is not necessarily unique.  There could be more 
than one      in      .

• Convexity: a function is convex if the line connecting any 
two points above the function is also above the function:

• Convex functions have a single, global minimum

• Most algorithms are characterized in terms of their 
ability to find the global minimum of convex 
functions.

• Non-convex function may have global or local minima 6

x

⇤ 2 D : f(x⇤) < f(x) 8x 2 D

x

⇤

x

⇤ D

convex
non-convex



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

Optimization
• Examples:

• Find the value of      that minimizes

• Find the value of                 that minimizes
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Optimization

• Examples: linear programs

• Premium and regular ice cream are sold for $5/gallon 
and $3.5/gallon respectively.

• Premium ice cream is 30% air by volume while regular 
ice cream is 50% air by volume.

• We can produce X gallons of premium and Y gallons of 
regular ice cream all at the same cost, $1/gallon.

• What fraction of milk processed should go toward 
premium versus regular ice cream?
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Optimization

•             is a local minimum of

• if 

• Global minima are also local minima

• If          is convex in      then a local minimum is the 
global minimum in    .

• If      is a closed set, the problem of finding the minimum 
is called constrained optimization.

• If      is an open set:     , the problem of finding the 
minimum is called unconstrained optimization
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Unconstrained Optimization
• Optimality criteria:

• How do I check for local minima?

• Assume         is twice differentiable, then:

• where: 

• As

• If                 , then

• But, replace     with       , and the converse is true  

• Therefore, I have a critical point when: 10
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Unconstrained Optimization
• Solving unconstrained optimization problems is the same 

as solving the system of nonlinear equations:

• Except, we want to ensure that we only find the roots 
associated with local minima in

• If the eigenvalues of the Hessian are positive, we can 
be sure that         is a minimum.  Why?

• For a minimum, the eigenvalues must be non-negative

• How do we craft an algorithm that only finds minima?

11

g = rf(x) = 0

f(x)

1
f(x+ d) = f(x) + g(x)Td+ dTH(x)d+ . . .

2

f(x)



Unconstrained Optimization

• Examples:

• Calculate the gradient.  Where is the critical point?  
Calculate the Hessian.  Is the critical point a minimum? 
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Unconstrained Optimization

• Method of steepest decent:

• Solve the equation:                                  , iteratively 
by taking steps in a direction that decreases   

• with              and 

• This ensures that      is a descent direction:

• Which descent direction should I choose?

• One option: maximize

• C-S inequality: 

• Solution: let 
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Unconstrained Optimization
• Method of steepest decent:

• Example:

• Contours for the function:
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Unconstrained Optimization
• Method of steepest decent:

• Direction of steepest descent: 

• Iterative solution:

• For small, positive values of      , the iterates 
continue to reduce          until

• The iterative method converges to local minima and 
potentially saddle points.  Need to check the 
Hessian still to be sure of minima.

• How do I choose values for      ? 

• Ideally, we pick the      that leads to the smallest 
value of               , but this is its own optimization.

• We can approximate the solution with a line 
search like in damped Newton-Raphson.
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Unconstrained Optimization
• Method of steepest decent:

• Example:

• Contours for the function:

• The choice of       is critical!    

• Too small and the convergence is slow
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• Method of steepest decent:

• Example:

• Contours for the function:

• The choice of       is critical!    

• Too big and convergence is erratic

↵i

Unconstrained Optimization
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• Method of steepest decent:

• Example:

• Contours for the function:

• The choice of       is critical!    

•
↵i

Unconstrained Optimization
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Unconstrained Optimization
• Method of steepest decent:

• Estimating an optimal     : 

• Use a Taylor expansion:

• This is quadratic in     , so find the minimum: 

• This can serve as a good starting point for a 
backtracking line search.
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• Method of steepest decent:

• Example:

• Contours for the function:

• The choice of       is critical!    
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Unconstrained Optimization
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• Method of steepest decent:

• Example:

• Contours for the function:

• The choice of       is critical!    
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Unconstrained Optimization
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