10.34: Numerical Methods Applied to Chemical Engineering

Lecture 10 :
Unconstrained Optimization
Steepest decent

Recap

- Homotopy and Bifurcation

Recap

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\left(\begin{array}{ll}
\left(x_{1}-1\right. &)^{2}+x_{2}^{2}-1 \\
\left(x_{1}+1\right. &)^{2}+x_{2}^{2}-1
\end{array}\right)=0 \\
& \mathbf{J}(\mathbf{x})=\left(\begin{array}{lll}
2\left(x_{1}-1\right. &) & 2 x_{2} \\
2\left(x_{1}+1\right. &) & 2 x_{2}
\end{array}\right)
\end{aligned}
$$

Optimization

- Problems of the sort:

$$
\min _{\mathbf{x} \in D} f(\mathbf{x}) \quad \arg \min _{\mathbf{x} \in D} f(\mathbf{x})
$$

- $f(\mathbf{x})$: objective function, cost function, energy
- "metric to compare alternatives"
- $\mathbf{x : " d e s i g n ~ a l t e r n a t i v e s " ~}$
- D : feasible set
- Maximization of $f(\mathbf{x})$ is just minimization of $-f(\mathbf{x})$

Optimization

Optimization

- Goal: find $\mathbf{x}^{*} \in D: f\left(\mathbf{x}^{*}\right)<f(\mathbf{x}) \quad \forall \mathbf{x} \in D$
- X^{*} is not necessarily unique. There could be more than one \mathbf{x}^{*} in D.
- Convexity: a function is convex if the line connecting any two points above the function is also above the function:

- Convex functions have a single, global minimum
- Most algorithms are characterized in terms of their ability to find the global minimum of convex functions.
- Non-convex function may have global or local minima

Optimization

- Examples:
- Find the value of x that minimizes

$$
f(x)=x^{2}+2 x+1
$$

- Find the value of $x \in[0,1]$ that minimizes

$$
f(x)=x^{2}+2 x+1
$$

Optimization

- Examples: linear programs
- Premium and regular ice cream are sold for $\$ 5 /$ gallon and $\$ 3.5 /$ gallon respectively.
- Premium ice cream is 30% air by volume while regular ice cream is 50% air by volume.
- We can produce X gallons of premium and Y gallons of regular ice cream all at the same cost, \$1/gallon.
- What fraction of milk processed should go toward premium versus regular ice cream?

Optimization

- $\mathbf{x}^{*} \in D$ is a local minimum of
- if $\exists \quad \epsilon>0: f\left(\mathbf{x}^{*}\right)<f(\mathbf{x}), \quad \forall \mathbf{x} \in D \cap B_{\epsilon}\left(\mathbf{x}^{*}\right)$

- Global minima are also local minima
- If $f(\mathbf{x})$ is convex in D then a local minimum is the global minimum in D.
- If D is a closed set, the problem of finding the minimum is called constrained optimization.
- If D is an open set: \mathbb{R}^{N}, the problem of finding the minimum is called unconstrained optimization

Unconstrained Optimization

- Optimality criteria:
- How do I check for local minima?
 $f(\mathbf{x}+\mathbf{d})=f(\mathbf{x})+\mathbf{g}(\mathbf{x})^{T} \mathbf{d}+\frac{1}{2} \mathbf{d}^{T} \mathbf{H}(\mathbf{x}) \mathbf{d}+\ldots$
- where: $g_{i}(\mathbf{x})=\frac{\partial f}{\partial x_{i}} \quad H_{i j}(\mathbf{x})=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$
- As $\|\mathbf{d}\|_{p} \rightarrow 0$

$$
f(\mathbf{x}+\mathbf{d})-f(\mathbf{x})=\mathbf{g}^{T} \mathbf{d}
$$

- If $\mathbf{g}^{T} \mathbf{d}>0$, then $f(\mathbf{x}+\mathbf{d})>f(\mathbf{x})$

- But, replace \mathbf{d} with $-\mathbf{d}$, and the converse is true
- Therefore, I have a critical point when: $\mathbf{g}=\nabla f(\mathbf{x})=0$

Unconstrained Optimization

- Solving unconstrained optimization problems is the same as solving the system of nonlinear equations:

$$
\mathbf{g}=\nabla f(\mathbf{x})=0
$$

- Except, we want to ensure that we only find the roots associated with local minima in $\mathbf{f}(\mathbf{x})$

$$
f(\mathbf{x}+\mathbf{d})=f(\mathbf{x})+\mathbf{g}(\times)^{T} \mathbf{d}+\frac{1}{2} \mathbf{d}^{T} \mathbf{H}(\mathbf{x}) \mathbf{d}+\ldots
$$

- If the eigenvalues of the Hessian are positive, we can be sure that $f(x)$ is a minimum. Why?
- For a minimum, the eigenvalues must be non-negative
- How do we craft an algorithm that only finds minima?

Unconstrained Optimization

- Examples:
- Calculate the gradient. Where is the critical point? Calculate the Hessian. Is the critical point a minimum?

$$
\begin{aligned}
& f(\mathbf{x})=x_{1}^{2}+x_{2}^{2} \\
& f(\mathbf{x})=x_{1}^{2}-x_{2}^{2} \\
& f(\mathbf{x})=x_{1}^{4}+x_{2}^{4}
\end{aligned}
$$

Unconstrained Optimization

- Method of steepest decent:
- Solve the equation: $\mathbf{g}(\mathbf{x})=\nabla f(\mathbf{x})=0$, iteratively by taking steps in a direction that decreases $f(\mathbf{x})$

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\alpha_{i} \mathbf{d}_{i}
$$

- with $\alpha_{i}>0$ and $\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}_{i}<0$
- This ensures that \mathbf{d}_{i} is a descent direction:

$$
f\left(\mathbf{x}_{i}+\alpha_{i} \mathbf{d}_{i}\right)=f\left(\mathbf{x}_{i}\right)+\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}_{i}+\ldots
$$

- Which descent direction should I choose?
- One option: maximize $-\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}_{i}$
- C-S inequality: $-\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}_{i} \leq\left\|\mathbf{g}\left(\mathbf{x}_{i}\right)\right\|_{2}\left\|\mathbf{d}_{i}\right\|_{2}$
- Solution: let $\mathbf{d}_{i}=-\mathbf{g}\left(\mathbf{x}_{i}\right)$

Unconstrained Optimization

- Method of steepest decent:
- Example: $f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}$
- Contours for the function:

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)
$$

Is there a best value of α_{i} to use with this function?

Unconstrained Optimization

- Method of steepest decent:
- Direction of steepest descent: $\mathbf{d}_{i}=-\mathbf{g}\left(\mathbf{x}_{i}\right)$
- Iterative solution: $\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)$
- For small, positive values of α_{i}, the iterates continue to reduce $f(\mathbf{x})$ until $\mathbf{g}(\mathbf{x})=0$
- The iterative method converges to local minima and potentially saddle points. Need to check the Hessian still to be sure of minima.
- How do I choose values for α_{i} ?
- Ideally, we pick the α_{i} that leads to the smallest value of $f\left(\mathbf{x}_{i+1}\right)$, but this is its own optimization.
- We can approximate the solution with a line search like in damped Newton-Raphson.

Unconstrained Optimization

- Method of steepest decent:
- Example: $f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function:

Draw the path given by small α_{i}

- The choice of α_{i} is critical!
- Too small and the convergence is slow

Unconstrained Optimization

- Method of steepest decent:
- Example: $f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function:

Draw the path given by larger α_{i}

- The choice of α_{i} is critical!
- Too big and convergence is erratic

Unconstrained Optimization

- Method of steepest decent:
- Example: $f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function:

Unconstrained Optimization

- Method of steepest decent:
- Estimating an optimal α_{i} :

$$
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)
$$

- Use a Taylor expansion:
$f\left(\mathbf{x}_{i+1}\right)=f\left(\mathbf{x}_{i}\right)-\alpha_{i} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)+\frac{1}{2} \alpha_{i}^{2} \mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)+\ldots$
- This is quadratic in α_{i}, so find the minimum:

$$
\alpha_{i}=\frac{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{g}\left(\mathbf{x}_{i}\right)}{\mathbf{g}\left(\mathbf{x}_{i}\right)^{T} \mathbf{H}\left(\mathbf{x}_{i}\right) \mathbf{g}\left(\mathbf{x}_{i}\right)}
$$

- This can serve as a good starting point for a backtracking line search.

Unconstrained Optimization

- Method of steepest decent:
- Example: $f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function:

Unconstrained Optimization

- Method of steepest decent:
- Example: $\log f(\mathbf{x})=x_{1}^{2}+10 x_{2}^{2}$
- Contours for the function:

MIT OpenCourseWare
httpV://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: httpV://ocw.mit.edu/terms.

