10.34: Numerical Methods Applied to Chemical Engineering

Lecture 7:
Solutions of nonlinear equations
Newton-Raphson method

Recap

- Singular value decomposition
- Iterative solutions to linear equations

Recap

- Iterative solutions to linear equations
- Given: \mathbf{x}_{0}
- Iterate on: $\mathbf{x}_{i+1}=\mathbf{C x} \mathbf{x}_{i}+\mathbf{c}$
- Until converged to solution of: $\mathbf{A x}=\mathbf{b}$
- Assume the iterations converge. When should I stop?

Systems of Nonlinear Eqns.

- Formally: $\mathbf{f}(\mathbf{x})=0$
- where: $\mathbf{x} \in \mathbb{R}^{N}$
- where: $\mathbf{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$
- \mathbf{X} are called the roots of $\mathbf{f}(\mathbf{x})$
- linear equations are represented as $\mathbf{f}(\mathbf{x})=\mathbf{A x}-\mathbf{b}$
- Common chemical engineering examples include:
- Equations of state
- Energy balances
- Mass balances with nonlinear reactions

Systems of Nonlinear Eqns.

- Example: van der Waals equation of state

$$
\left(\hat{P}+\frac{3}{\hat{v}^{2}}\right)\left(\hat{v}-\frac{1}{3}\right)=\frac{8}{3} \hat{T}
$$

- $\hat{P}, \hat{T}, \hat{v}$ are reduced pressure, temperature, and molar volume

- Given pressure and temperature, there are I-3 molar volumes that satisfy the equation of state.

Systems of Nonlinear Eqns.

- Example: van der Waals equation of state

$$
\left(\hat{P}+\frac{3}{\hat{v}^{2}}\right)\left(\hat{v}-\frac{1}{3}\right)=\frac{8}{3} \hat{T}
$$

- Given pressure and temperature, I, 2 or 3 solutions for molar volume possible.

$$
f(\hat{v} ; \hat{P}, \hat{T})=\left(\hat{P}+\frac{3}{\hat{v}^{2}}\right)\left(\hat{v}-\frac{1}{3}\right)-\frac{8}{3} \hat{T}=0
$$

- In general, nonlinear equations can have any number of solutions. It is impossible to predict beforehand.
- For gas-liquid coexistence, can the pressure and temperature be specified independently?

Systems of Nonlinear Eqns.

- Example: van der Waals equation of state
- For gas-liquid coexistence, can the pressure and temperature be specified independently?
- No!
- Thermal equil. - same temperature in gas/liquid

$$
\hat{T}_{G}=\hat{T}_{L}=\hat{T}
$$

- Mechanical equil. - same pressure in gas/liquid

$$
\hat{P}_{G}=\hat{P}_{L}=\hat{P}_{\mathrm{sat}}
$$

- Chemical equil. - same chemical potential in gas/liquid

$$
\int_{\hat{v}_{G}}^{\hat{v}_{L}}\left(\hat{P}(\hat{v})-\hat{P}_{\text {sat }}\right) d \hat{v}=0
$$

Systems of Nonlinear Eqns.

- Example: van der Waals equation of state
- For gas-liquid coexistence, can the pressure and temperature be specified independently?
- Given the temperature, there are 3 unknowns
- The saturation pressure
- The molar volumes of the gas and liquid
- There are three nonlinear equations to solve:
- Equation of state in gas/liquid
- Maxwell equal area construction
- Must solve: $\mathbf{f}\left(\hat{P}_{\text {sat }}, \hat{v}_{G}, \hat{v}_{L}\right)=0$

Systems of Nonlinear Eqns.

- Example: van der Waals equation of state
- Must solve: $\mathbf{f}\left(\hat{P}_{\text {sat }}, \hat{v}_{G}, \hat{v}_{L}\right)=0$

$$
\begin{gathered}
f_{1}\left(\hat{P}_{\text {sat }}, \hat{v}_{G}, \hat{v}_{L}\right)=\left(\hat{P}_{\text {sat }}+\frac{3}{\hat{v}_{G}^{2}}\right)\left(\hat{v}_{G}-\frac{1}{3}\right)-\frac{8}{3} \hat{T}=0 \\
f_{2}\left(\hat{P}_{\text {sat }}, \hat{v}_{G}, \hat{v}_{L}\right)=\left(\hat{P}_{\text {sat }}+\frac{3}{\hat{v}_{L}^{2}}\right)\left(\hat{v}_{L}-\frac{1}{3}\right)-\frac{8}{3} \hat{T}=0 \\
f_{3}\left(\hat{P}_{\mathrm{sat}}, \hat{v}_{G}, \hat{v}_{L}\right)=\int_{\hat{v}_{G}}^{\hat{v}_{L}}\left(\hat{P}(\hat{v})-\hat{P}_{\mathrm{sat}}\right) d \hat{v}=0
\end{gathered}
$$

Systems of Nonlinear Eqns.

- Example: van der Waals equation of state
- Use $\hat{P}_{\text {sat }}=\frac{1}{\hat{v}_{L}-\hat{v}_{G}} \int_{\hat{v}_{G}}^{\hat{v}_{L}} \hat{P}(\hat{v}) d \hat{v}$ to eliminate $\hat{P}_{\text {sat }}$

$$
f_{1}\left(\hat{P}_{\mathrm{sat}}, \hat{v}_{G}, \hat{v}_{L}\right), f_{2}\left(\hat{P}_{\mathrm{sat}}, \hat{v}_{G}, \hat{v}_{L}\right)
$$

Systems of Nonlinear Eqns.

- Given: $\mathbf{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$
- Find: $\mathbf{x}^{*} \in \mathbb{R}^{N}: \mathbf{f}\left(\mathbf{x}^{*}\right)=0$
- There could be no solutions
- There could be $1<n<\infty$ locally unique solutions
- There could be ∞ solutions
- A solution, \mathbf{x}^{*}, is locally unique if there exists a ball of finite radius such that \mathbf{x}^{*} is the only solution within the ball.
- Consider the simple function:

$$
\binom{f_{1}\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{1}, x_{2}\right)}=0
$$

Systems of Nonlinear Eqns.

$$
\binom{f_{1}\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{1}, x_{2}\right)}=0
$$

$$
f_{1}\left(x_{1}, x_{2}\right)=0
$$

Systems of Nonlinear Eqns.

Systems of Nonlinear Eqns.

- Inverse function theorem:
- If $\mathbf{f}\left(\mathbf{x}^{*}\right)=0$ and $\operatorname{det} \mathbf{J}\left(\mathbf{x}^{*}\right) \neq 0$,
- then X^{*} is a locally unique solution,
- where the Jacobian is: $\mathbf{J}(\mathbf{x})=\left(\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{N}}{\partial x_{1}} & \frac{\partial f_{N}}{\partial x_{2}} & \cdots & \frac{\partial f_{N}}{\partial x_{N}}\end{array}\right)$
- The Jacobian describes the rate of change of a vector function with respect to all of its independent variables.
- If $\operatorname{det} \mathbf{J}\left(\mathbf{x}^{*}\right)=0$, solution may/may not be locally unique
- Most numerical methods can only find one locally unique solution at a time.

Systems of Nonlinear Eqns.

- Example:
- Compute the Jacobian of:

$$
\mathbf{f}(\mathbf{x})=\binom{x_{1}^{2}+x_{2}^{2}}{x_{1}^{2} x_{2}^{2}}
$$

Systems of Nonlinear Eqns.

Systems of Nonlinear Eqns.

- Inverse function theorem:
- Consider a linear equation: $\mathbf{f}(\mathbf{x})=\mathbf{A x}-\mathbf{b}$
- The Jacobian of the function is:

$$
\mathbf{J}(\mathbf{x})=\mathbf{A}
$$

- The equation: $\mathbf{f}(\mathbf{x})=0$, has a locally unique solution when $\operatorname{det} \mathbf{J}(\mathbf{x})=\operatorname{det} \mathbf{A} \neq 0$
- There is a locally unique solution when \mathbf{A} is invertible
- The inverse function theorem is just a generalization of what we learned in our study of linear algebra.
- In fact, in a neighborhood close to a root of $\mathbf{f}(\mathbf{x})$, we can often treat the function as linear!

Linearization

- Linearizing I-D nonlinear functions:
- $f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x+O\left(\Delta x^{2}\right)$
- typically valid as $\Delta x \rightarrow 0$
- Linearizing generalized nonlinear functions:
- $\mathbf{f}(\mathbf{x}+\Delta \mathbf{x})=\mathbf{f}(\mathbf{x})+\mathbf{J}(\mathbf{x}) \Delta \mathbf{x}+O\left(\|\Delta \mathbf{x}\|_{2}^{2}\right)$
- typically valid as $\|\Delta \mathbf{x}\|_{2} \rightarrow 0$
- Part of a Taylor expansion for each component of $\mathbf{f}(\mathbf{x})$:

$$
\begin{aligned}
f_{i}(\mathbf{x}+\Delta \mathbf{x}) & =f_{i}(\mathbf{x})+\sum_{j=1}^{N} \frac{\partial f_{i}(\mathbf{x})}{\partial x_{j}} \Delta x_{j} \\
& +\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{\partial^{2} f_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}} \Delta x_{j} \Delta x_{k}+\ldots
\end{aligned}
$$

Iterative Solutions to NLEs

- Nonlinear equations, $\mathbf{f}\left(\mathrm{x}^{*}\right)=0$, are solved iteratively
- The algorithmic map: $\mathbf{x}_{i+1}=\mathbf{g}\left(\mathbf{x}_{i}\right)$, is designed so that:
- $\mathbf{x}^{*}=\mathbf{g}\left(\mathbf{x}^{*}\right)$
- equivalently, \mathbf{x}^{*} is a fixed point of the map, $\mathbf{g}(\mathbf{x})$
- Iterations stop when the map is sufficiently converged.
- Two common criterion for stopping are:
- Function norm criterion:

$$
\left\|\mathbf{f}\left(\mathbf{x}_{i+1}\right)\right\|_{p} \leq \epsilon
$$

- Step norm criterion:

$$
\left\|\mathbf{x}_{i+1}-\mathbf{x}_{i}\right\|_{p} \leq \epsilon_{R}\left\|\mathbf{x}_{i+1}\right\|_{p}+\epsilon_{A}
$$

Iterative Solutions to NLEs

- Failure of function norm criterion:

- Failure of step norm criterion:

Convergence Rate

- The rate of convergence is addressed by examining:

$$
\lim _{k \rightarrow \infty} \frac{\left\|\mathbf{x}_{i+1}-\mathbf{x}^{*}\right\|_{p}}{\left\|\mathbf{x}_{i}-\mathbf{x}^{*}\right\|_{p}^{q}}=C
$$

- when the limit exists and is not zero:
- $q=1, C<1$, convergence is linear
- If $C=10^{-1}$ each iteration is I digit more accurate than the previous
- $q>1$, convergence is super-linear
- $q=2$, convergence is quadratic
- The number of accurate digits doubles with each iteration.
- Jacobi and Gauss-Seidel showed linear convergence rates

Newton-Raphson Method

- Utilize linear approximations of the function to find a root iteratively:

Newton-Raphson Method

- When the iterate is sufficiently close to the root, convergence is guaranteed (local convergence)!
- Extending this idea to systems nonlinear equations is easy:
- Approximate the function as linear:

$$
\begin{aligned}
\mathbf{f}\left(\mathbf{x}_{i+1}\right) \approx 0 & =\mathbf{f}\left(\mathbf{x}_{i}\right)+\mathbf{J}\left(\mathbf{x}_{i}\right)\left(\mathbf{x}_{i+1}-\mathbf{x}_{i}\right) \\
\mathbf{f}\left(\mathbf{x}_{i+1}\right) & \approx 0=\mathbf{f}\left(\mathbf{x}_{i}\right)+\mathbf{J}\left(\mathbf{x}_{i}\right) \mathbf{d}_{i}
\end{aligned}
$$

- Solve for the displacement:

$$
\mathbf{J}\left(\mathbf{x}_{i}\right) \mathbf{d}_{i}=-\mathbf{f}\left(\mathbf{x}_{i}\right) \Rightarrow \mathbf{d}_{i}=-\left[\mathbf{J}\left(\mathbf{x}_{i}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}_{i}\right)
$$

- Update the iterate:

$$
\begin{gathered}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\mathbf{d}_{i} \\
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\left[\mathbf{J}\left(\mathbf{x}_{i}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}_{i}\right)
\end{gathered}
$$

Newton-Raphson Method

- Example: the intersection of circles

Newton-Raphson Method

- Example: the intersection of circles

$$
\begin{array}{r}
0=f_{1}\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}-9 \\
0=f_{2}\left(x_{1}, x_{2}\right)=\left(x_{1}+3\right)^{2}+\left(x_{2}+1\right)^{2}-9
\end{array}
$$

$$
J(x)=(\quad)
$$

k	$\boldsymbol{x}^{(k)}$	$\boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right)$	$\left\\|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(k-1)}\right\\|_{2}$	$\left\\|\boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right)\right\\|_{2}$
0	$(-1.00,3.00)$	$(1.00,11.0)$		11.1
1	$(-1.25,1.75)$	$(1.63,1.63)$	0.556	2.30
2	$(-0.963,1.27)$	$(0.310,0.310)$	0.173	0.439
3	$(-0.875,1.124)$	$(0.030,0.030)$	0.020	0.042
4	$(-0.864,1.101)$	$(0.004,0.004)$	0.003	0.006

Newton-Raphson Method

- Example: the intersection of circles

$\operatorname{det}(\boldsymbol{J}(\boldsymbol{x}))=4\left(x_{1}-2\right)\left(x_{2}+1\right)-4\left(x_{2}-2\right)\left(x_{1}+3\right)$
- Notice that convergence is slowest near where $\operatorname{det} \mathbf{J}(\mathbf{x})={ }_{28}^{0}$

MIT OpenCourseWare
https://ocw.mit.edu
10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

