
   
  

 

 
 

10.34: Numerical Methods
 
Applied to
 

Chemical Engineering
 

Lecture 7:
 
Solutions of nonlinear equations
 

Newton-Raphson method
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Recap
 

• Singular value decomposition 

• Iterative solutions to linear equations
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Recap 
• Iterative solutions to linear equations 

• Given: x0 

• Iterate on: 
xi+1 = Cxi + c 

• Until converged to solution of: 
Ax = b 

• Assume the iterations converge. When should I stop?
 

3 



 

 

 

     

   

   

 

  

Systems of Nonlinear Eqns.
 

• Formally: f(x) = 0  

• where: 
x 2 RN 

• where: f : RN ! RN 

• x are called the roots of 
f(x) 

• linear equations are represented as 
f(x) = Ax - b 

• Common chemical engineering examples include: 

• Equations of state 

• Energy balances 

• Mass balances with nonlinear reactions 
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Systems of Nonlinear Eqns. 
• Example: van der Waals equation of state 

✓
3 
◆✓  

1 
◆ 

8ˆ ˆP + v̂ - = T 
v̂2 3 3 

ˆ T ,  ˆ• P ,  ˆ v are reduced pressure, temperature, and 
molar volume 

2 

P̂ 1 
T̂ = .11

T̂ = .90

v̂ 
21 3 

v̂L v̂G
 

• Given pressure and temperature, there are 1-3 molar 
volumes that satisfy the equation of state. 
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Systems of Nonlinear Eqns. 
•	 Example: van der Waals equation of state 

✓	
3 
◆✓  

1 
◆ 

8ˆ	 ˆP +	 v̂ - = T 
v̂2	 3 3 

•	 Given pressure and temperature, 1, 2 or 3 solutions 
for molar volume possible. 

✓	
3
◆✓  

1
◆ 

8 
f(v̂; ˆ T ) =  P̂ +	 ˆ - T̂ = 0P , 	  ̂ v -

v̂2	 3 3 

•	 In general, nonlinear equations can have any number of 
solutions. It is impossible to predict beforehand. 

•	 For gas-liquid coexistence, can the pressure and 
temperature be specified independently? 
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Systems of Nonlinear Eqns.
 
•	 Example: van der Waals equation of state 

•	 For gas-liquid coexistence, can the pressure and
 
temperature be specified independently?
 

•	 No! 

•	 Thermal equil. – same temperature in gas/liquid
 

ˆ	 ˆ ˆTG = TL = T 

• Mechanical equil. – same pressure in gas/liquid 

ˆ	 ˆ ˆPG = PL = Psat 

•	 Chemical equil. – same chemical potential in gas/liquid 
Z v̂L 

(P̂ (v̂) � P̂sat) dv̂ = 0  
v̂G 
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Systems of Nonlinear Eqns.
 

•	 Example: van der Waals equation of state 

•	 For gas-liquid coexistence, can the pressure and 
temperature be specified independently? 

•	 Given the temperature, there are 3 unknowns 

•	 The saturation pressure 

•	 The molar volumes of the gas and liquid 

•	 There are three nonlinear equations to solve: 

•	 Equation of state in gas/liquid 

•	 Maxwell equal area construction 

•	 Must solve: f(P̂sat, v̂G, v̂L) = 0  
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Systems of Nonlinear Eqns.
 

• Example: van der Waals equation of state
 

• Must solve: f(P̂sat, v̂G, v̂L) = 0  

✓
3 
◆✓  

1
◆ 

8 
f1(P̂sat, v̂G, v̂L) =  P̂sat + 2 v̂G - - T̂ = 0 
  

v̂ 3 3G 

✓
3 
◆✓  

1
◆ 

8 
f2(P̂sat, v̂G, v̂L) =  P̂sat + 2 v̂L - - T̂ = 0 
  

v̂ 3 3L 

Z v̂L 

f3(P̂sat, v̂G, v̂L) =  (P̂ (v̂)- P̂sat) dv̂ = 0 
  
v̂G 
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Systems of Nonlinear Eqns.
 
• Example: van der Waals equation of state 

1 
Z v̂L 

ˆ ˆ ˆ• Use                                                    to eliminate         = v)dv̂ PsatPsat P (ˆ
v̂L � v̂Gfrom: v̂G 

f1(P̂sat, v̂G, v̂L), f2(P̂sat, v̂G, v̂L), 

3 

f1(v̂G, v̂L) = 0  
2 

v̂G 

1 

f2(v̂G, v̂L) = 0  

1 2 3 
v̂L 
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Systems of Nonlinear Eqns.
 

• Given: f : RN ! RN 

• Find: 
x ⇤ 2 RN : f(x ⇤) = 0  

• There could be no solutions 

• There could be 1 < n < 1 locally unique solutions
 

• There could be 1 solutions 
⇤• A solution, x , is locally unique if there exists a ball of finite 


⇤radius such that x is the only solution within the ball.
 

• Consider the simple function: 
✓ 

f1(x1, x2) 
◆ 

= 0
f2(x1, x2) 
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 Systems of Nonlinear Eqns.
 
✓ 

f1(x1, x2) 
◆ 

x2
= 0
f2(x1, x2) 

f1(

f2(x1, x2) = 0  

x1, x2) = 0  

x1 
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Systems of Nonlinear Eqns.
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✓ 
f1(x1, x2) 
f2(x1, x2) 

◆ 

= 0  

f1(x1, x2) = 0  

f2(x1, x2) = 0  

x1 

x2 

locally unique solution 

tangent curves, potentially 
not locally unique 



 

                                             

        

  
   

                         

   
 

Systems of Nonlinear Eqns. 
•	 Inverse function theorem: 

x	 det J(x = 0  ,•	 If f( ⇤) = 0 and ⇤) 6
⇤•	 then 

x is a locally unique solution, 

•	 where the Jacobian is: 
0 

@f1 @f1 @f1 
1

. . .  
@x1 @x2 @xN 
@f2 @f2 @f2B	 . . .  C
@x1 @x2	 @xN

J(x) =
B	 C

. .	 .B	
. 

C
.	 . . .B
. .	 . . 

C@	 A
@fN @fN	 @fN 
@x1 @x2 

. . .  
@xN 

•	 The Jacobian describes the rate of change of a vector 
function with respect to all of its independent variables. 

•	 If det J(x ⇤) = 0  , solution may/may not be locally unique 

•	 Most numerical methods can only find one locally unique 
solution at a time. 14 



 Systems of Nonlinear Eqns. 
• Example: 

• Compute the Jacobian of: 
✓
 

x
21

2
2


◆

+ x


f(x) = 
 2
1
x
22
x
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Systems of Nonlinear Eqns.
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✓ 
f1(x1, x2) 
f2(x1, x2) 

◆ 

= 0  

f1(x1, x2) = 0  

f2(x1, x2) = 0  

x1 

x2 

locally unique solution 

tangent curves, potentially 
not locally unique 



 

  

                    

         

   
 

              
 

Systems of Nonlinear Eqns. 

•	 Inverse function theorem: 

•	 Consider a linear equation: f(x) = Ax � b 

•	 The Jacobian of the function is: 

J(x) = A 

•	 The equation: f(x) = 0 , has a locally unique solution 
when detJ(x) = detA = 06

•	 There is a locally unique solution when A is invertible
 

•	 The inverse function theorem is just a generalization of what 
we learned in our study of linear algebra. 

•	 In fact, in a neighborhood close to a root of 
f(x), we can 

often treat the function as linear! 
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Linearization
 
• Linearizing 1-D nonlinear functions: 

f(x +�x) = f(x) + f 0(x)�x +O(�x 2)
• 
• typically valid as �x ! 0 

• Linearizing generalized nonlinear functions: 

• f(x +�x) = f(x) + J(x)�x +O(k�xk22)
 

• typically valid as k�xk2 ! 0 

X
 
• Part of a Taylor expansion for each component of 

f(x) :
 
N


@fi(x)

x +�x) = fi(


X
N


�xj
fi(
 x) + 
  
j=1 

@xj
 

NX

@

2
fi(x)
1
 

+ 
2 

�xj �xk + . . . 
  
@xj @xk
j=1 k=1
 19 



  

                    

                              

 

           

   

  

  

Iterative Solutions to NLEs
 

• Nonlinear equations, f(x ⇤) = 0, are solved iteratively 

• The algorithmic map: xi+1 = g(xi) , is designed so that:
 

x = g(x ⇤)• ⇤ 

⇤• equivalently, 
x is a fixed point of the map, 

g(x) 

• Iterations stop when the map is sufficiently converged. 

• Two common criterion for stopping are: 

• Function norm criterion: 

kf(xi+1)kp  ✏ 

• Step norm criterion: 

kxi+1 � xikp  ✏Rkxi+1kp + ✏A 

20 



  Iterative Solutions to NLEs
 

• Failure of function norm criterion:
 

f(x) 
x 

< ✏ 

xi�1 
xi 

xi+1 

• Failure of step norm criterion:
 

•
 

< ✏A f(x) 
xi�1 

xi 
xi+1 

x 

21 



  

    

                        

                    

           

           

   

    

Convergence Rate 
• The rate of convergence is addressed by examining:
 

kxi+1 � x⇤kplim	 = C 
k!1 kxi � x⇤kq 

p 

•	 when the limit exists and is not zero: 

•	 q = 1, C  < 1 , convergence is linear 

•	 If C = 10�1 each iteration is 1 digit more 
accurate than the previous 

•	 q > 1 , convergence is super-linear 

•	 q = 2 , convergence is quadratic 

•	 The number of accurate digits doubles with each 
iteration. 

•	 Jacobi and Gauss-Seidel showed linear convergence rates 
22 



    
iteratively: 

f(x) 

x

xi+1 xi 

Newton-Raphson Method 
• Utilize linear approximations of the function to find a root 

f(xi+1) ⇡ 0 = f(xi) + f

0(xi)(xi+1 � xi) 
f(xi)

xi+1 = xi � 
f

0(xi) 23 



   
    

       

 

Newton-Raphson Method 

• When the iterate is sufficiently close to the root,
 
convergence is guaranteed (local convergence)! 


• Extending this idea to systems nonlinear equations is easy: 

• Approximate the function as linear: 

f(xi+1) ⇡ 0 = f(xi) + J(xi)(xi+1 - xi) 

f(xi+1) ⇡ 0 = f(xi) + J(xi)di 

• Solve for the displacement: 

J(xi)di = �f(xi) ) di = �[J(xi)]
�1

f(xi) 

• Update the iterate: 

xi+1 = xi + di 

xi+1 = xi - [J(xi)]
 1

f(xi) 24 



systems of non-linear equations 65

where f (x⇤) = 0. Solving for x⇤ one finds

x

⇤ = x

(k) + Dx(k) (3.32)

with the vector Dx(k) satisfying the equation:

J (x(k))Dx(k) = �f (x(k)) � r(x⇤,x(k)). (3.33)

It is assumed implicitly here that J (x) is nonsingular so that a unique
“Newton step” Dx(k) can be found which satisfies this equation. As seen
in the previous chapter, this will require that detJ (x(k)) 6= 0.

Suppose that x(k) is sufficiently close to x

⇤ that the residual kr(x⇤,x(k)k2⌧
kf (x(k))k2. The quantity Dx(k) can be approximated as

Dx(k) =
⇣

J (x(k))
⌘�1

f (x(k)), (3.34)

and as a result x⇤ is approximated by x

(k+1) as:

x

(k+1) = x

(k) �
⇣

J (x(k))
⌘�1

f (x(k)). (3.35)

As with the Newton-Raphson method for one equation, this algorithmic
map exhibits local, quadratic convergence when J (x⇤) is nonsingular.
Simply put, rapid convergence requires that the initial guess is close
enough to the exact root that higher order terms in the Taylor expansion
are negligible.

A geometric example

Consider the intersection of two circles of radius 3 with centers at
(2, 2) and (�3, �1). Equations for the points (x1, x2) residing on
the surface of each circle are

The intersections between the circles will be the points that satisfy
both of these equations simultaneously. Since the circles are
not concentric, they either do not intersect and these equations
have no solution. Or, the circles just touch and there is a unique
solution. Or, the circles overlap and there are two solutions.

The Jacobian of the function f (x) = ( f1(x1, x2), f2(x1, x2)) is

J (x) =
2(x1 � 2) 2(x2 � 2)
2(x1 + 3) 2(x2 + 1)

!

. (3.36)

The determinant of the Jacobian is

det (J (x)) = 4(x1 � 2)(x2 + 1) � 4(x2 � 2)(x1 + 3), (3.37)

 

 

Newton-Raphson Method 
• Example: the intersection of circles 

•
 

x2 

x1, x2) = 0  

x1 

0 =  f1(x1, x2) = (x1 � 2)2 + (x2 � 2)2 � 9, 

0 =  f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2 � 9. 
f1(

f2(x1, x2) = 0  

25 
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where f (x⇤) = 0. Solving for x⇤ one finds

x

⇤ = x

(k) + Dx(k) (3.32)

with the vector Dx(k) satisfying the equation:

J (x(k))Dx(k) = �f (x(k)) � r(x⇤,x(k)). (3.33)

It is assumed implicitly here that J (x) is nonsingular so that a unique
“Newton step” Dx(k) can be found which satisfies this equation. As seen
in the previous chapter, this will require that detJ (x(k)) 6= 0.

Suppose that x(k) is sufficiently close to x

⇤ that the residual kr(x⇤,x(k)k2⌧
kf (x(k))k2. The quantity Dx(k) can be approximated as

Dx(k) =
⇣

J (x(k))
⌘�1

f (x(k)), (3.34)

and as a result x⇤ is approximated by x

(k+1) as:

x

(k+1) = x

(k) �
⇣

J (x(k))
⌘�1

f (x(k)). (3.35)

As with the Newton-Raphson method for one equation, this algorithmic
map exhibits local, quadratic convergence when J (x⇤) is nonsingular.
Simply put, rapid convergence requires that the initial guess is close
enough to the exact root that higher order terms in the Taylor expansion
are negligible.

A geometric example

Consider the intersection of two circles of radius 3 with centers at
(2, 2) and (�3, �1). Equations for the points (x1, x2) residing on
the surface of each circle are

The intersections between the circles will be the points that satisfy
both of these equations simultaneously. Since the circles are
not concentric, they either do not intersect and these equations
have no solution. Or, the circles just touch and there is a unique
solution. Or, the circles overlap and there are two solutions.

The Jacobian of the function f (x) = ( f1(x1, x2), f2(x1, x2)) is

J (x) =
2(x1 � 2) 2(x2 � 2)
2(x1 + 3) 2(x2 + 1)

!

. (3.36)

The determinant of the Jacobian is

det (J (x)) = 4(x1 � 2)(x2 + 1) � 4(x2 � 2)(x1 + 3), (3.37)
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where f (x⇤) = 0. Solving for x⇤ one finds

x

⇤ = x

(k) + Dx(k) (3.32)

with the vector Dx(k) satisfying the equation:

J (x(k))Dx(k) = �f (x(k)) � r(x⇤,x(k)). (3.33)

It is assumed implicitly here that J (x) is nonsingular so that a unique
“Newton step” Dx(k) can be found which satisfies this equation. As seen
in the previous chapter, this will require that detJ (x(k)) 6= 0.

Suppose that x(k) is sufficiently close to x

⇤ that the residual kr(x⇤,x(k)k2⌧
kf (x(k))k2. The quantity Dx(k) can be approximated as

Dx(k) =
⇣

J (x(k))
⌘�1

f (x(k)), (3.34)

and as a result x⇤ is approximated by x

(k+1) as:

x

(k+1) = x

(k) �
⇣

J (x(k))
⌘�1

f (x(k)). (3.35)

As with the Newton-Raphson method for one equation, this algorithmic
map exhibits local, quadratic convergence when J (x⇤) is nonsingular.
Simply put, rapid convergence requires that the initial guess is close
enough to the exact root that higher order terms in the Taylor expansion
are negligible.

A geometric example

Consider the intersection of two circles of radius 3 with centers at
(2, 2) and (�3, �1). Equations for the points (x1, x2) residing on
the surface of each circle are

0 = f1(x1, x2) = (x1 � 2)2 + (x2 � 2)2 � 9,

0 = f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2 � 9.

The intersections between the circles will be the points that satisfy
both of these equations simultaneously. Since the circles are
not concentric, they either do not intersect and these equations
have no solution. Or, the circles just touch and there is a unique
solution. Or, the circles overlap and there are two solutions.

The Jacobian of the function f (x) = ( f1(x1, x2), f2(x1, x2)) is

. (3.36)

The determinant of the Jacobian is

det (J (x)) = 4(x1 � 2)(x2 + 1) � 4(x2 � 2)(x1 + 3), (3.37)
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and equals zero only for points on the line: 3x1 � 5x2 + 4 = 0. At
those points, the Jacobian is singular. To determine a solution of
this equation using the Newton-Raphson method, begin with an
initial guess, x(0) = (�1, 3) which is well away from the line along
which the Jacobian is singular. Table 3.1 shows the results of the
first four iterations of the Newton-Raphson method which are
converging on a point near (�0.86, 1.1).

In figure ??. The convergence of many different initial iterates to
the solutions of the system of equations is depicted. Initial iterates
in spaces colored blue converged to the solution in the blue
region. Those initial iterates in spaces colored red converged to
the solution in the red region. The color is darkened in proportion
to the number of iterations it took to reach and function norm
tolerance of 10�10. Clearly, an initial guess that resides near a
solution to the equations is desirable. However, such a guess
must not be near places where the Jacobian is nearly singular –
the line, 3x1 � 5x2 + 5, in this case.

Table 3.1: The first few steps of the
Newton-Raphson method to find the in-
tersection .

x1

x2

�8 8
�8

8 Figure 3.4: The intersection between to
circles: (x1 � 2)2 + (x2 � 2)2 = 9 and
(x1 + 3)2 + (x3 + 1)2 = 9 is indicated by
the stars. Regions in blue indicate initial
guesses for which Newton’s method con-
verged to the star in blue while regions
in orange indicate the converse. Darker
colors indicate more iterations were re-
quired during the search for the solution.

 

 

 

2(x1 � 2) 2(x2 � 2)
2(x1 + 3) 2(x2 + 1)

Newton-Raphson Method 
• Example: the intersection of circles 

0 =  f1(x1, x2) = (x1 � 2)2 + (x2 � 2)2 � 9, 

0 =  f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2 � 9. 

! 

J (x) =  

•
 

(k) (k�1)k2k x f (x(k)) kx(k) � x kf (x(k))k2 

0 (�1.00, 3.00) (1.00, 11.0) 11.1 

1 (�1.25, 1.75) (1.63, 1.63) 0.556 2.30 

2 (�0.963, 1.27) (0.310, 0.310) 0.173 0.439 

3 (�0.875, 1.124) (0.030, 0.030) 0.020 0.042 

4 (�0.864, 1.101) (0.004, 0.004) 0.003 0.006 
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and equals zero only for points on the line: 3x1 � 5x2 + 4 = 0. At
those points, the Jacobian is singular. To determine a solution of
this equation using the Newton-Raphson method, begin with an
initial guess, x(0) = (�1, 3) which is well away from the line along
which the Jacobian is singular. Table 3.1 shows the results of the
first four iterations of the Newton-Raphson method which are
converging on a point near (�0.86, 1.1).

In figure ??. The convergence of many different initial iterates to
the solutions of the system of equations is depicted. Initial iterates
in spaces colored blue converged to the solution in the blue
region. Those initial iterates in spaces colored red converged to
the solution in the red region. The color is darkened in proportion
to the number of iterations it took to reach and function norm
tolerance of 10�10. Clearly, an initial guess that resides near a
solution to the equations is desirable. However, such a guess
must not be near places where the Jacobian is nearly singular –
the line, 3x1 � 5x2 + 5, in this case.

k x

(k)
f (x(k)) kx(k) � x

(k�1)k2 kf (x(k))k2

0 (�1.00, 3.00) (1.00, 11.0) 11.1
1 (�1.25, 1.75) (1.63, 1.63) 0.556 2.30
2 (�0.963, 1.27) (0.310, 0.310) 0.173 0.439
3 (�0.875, 1.124) (0.030, 0.030) 0.020 0.042
4 (�0.864, 1.101) (0.004, 0.004) 0.003 0.006

Table 3.1: The first few steps of the
Newton-Raphson method to find the in-
tersection .

Figure 3.4: The intersection between to
circles: (x1 � 2)2 + (x2 � 2)2 = 9 and
(x1 + 3)2 + (x3 + 1)2 = 9 is indicated by
the stars. Regions in blue indicate initial
guesses for which Newton’s method con-
verged to the star in blue while regions
in orange indicate the converse. Darker
colors indicate more iterations were re-
quired during the search for the solution.
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where f (x⇤) = 0. Solving for x⇤ one finds

x

⇤ = x

(k) + Dx(k) (3.32)

with the vector Dx(k) satisfying the equation:

J (x(k))Dx(k) = �f (x(k)) � r(x⇤,x(k)). (3.33)

It is assumed implicitly here that J (x) is nonsingular so that a unique
“Newton step” Dx(k) can be found which satisfies this equation. As seen
in the previous chapter, this will require that detJ (x(k)) 6= 0.

Suppose that x(k) is sufficiently close to x

⇤ that the residual kr(x⇤,x(k)k2⌧
kf (x(k))k2. The quantity Dx(k) can be approximated as

Dx(k) =
⇣

J (x(k))
⌘�1

f (x(k)), (3.34)

and as a result x⇤ is approximated by x

(k+1) as:

x

(k+1) = x

(k) �
⇣

J (x(k))
⌘�1

f (x(k)). (3.35)

As with the Newton-Raphson method for one equation, this algorithmic
map exhibits local, quadratic convergence when J (x⇤) is nonsingular.
Simply put, rapid convergence requires that the initial guess is close
enough to the exact root that higher order terms in the Taylor expansion
are negligible.

A geometric example

Consider the intersection of two circles of radius 3 with centers at
(2, 2) and (�3, �1). Equations for the points (x1, x2) residing on
the surface of each circle are

0 = f1(x1, x2) = (x1 � 2)2 + (x2 � 2)2 � 9,

0 = f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2 � 9.

The intersections between the circles will be the points that satisfy
both of these equations simultaneously. Since the circles are
not concentric, they either do not intersect and these equations
have no solution. Or, the circles just touch and there is a unique
solution. Or, the circles overlap and there are two solutions.

The Jacobian of the function f (x) = ( f1(x1, x2), f2(x1, x2)) is

J (x) =
2(x1 � 2) 2(x2 � 2)
2(x1 + 3) 2(x2 + 1)

!

. (3.36)

The determinant of the Jacobian is

, (3.37)

 

 

 

Newton-Raphson Method 
• Example: the intersection of circles 

•
 

x1 

x2 

�8 8 
�8 

8 

det (J (x)) = 4(x1 � 2)(x2 + 1) � 4(x2 � 2)(x1 + 3)
 

• Notice that convergence is slowest near where det J(x) = 0 
  
28 
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