10.34: Numerical Methods Applied to Chemical Engineering

Lecture 6: Singular value decomposition Iterative solutions of linear equations

- Eigenvalues
- Eigenvectors
- Eigendecomposition

• Find the eigenvalues and eigenfunctions of: $\frac{d^2}{dx^2}$ $\frac{d^2}{dx^2}y = \lambda y, \quad y(0) = 0, y(L) = 0$

Find the eigenvalues and eigenfunctions of: $\frac{d^2}{dx^2}$ $\frac{d^2}{dx^2}y = \lambda y, \quad y(0) = 0, \quad y(L) = 0$ $y = C_1 e^{\sqrt{\lambda}x} + C_2 e^{-\sqrt{\lambda}x}$ $y = C'_1 \cos(\sqrt{-\lambda x}) + C'_2 \sin(\sqrt{-\lambda x})$ $y(0) = 0 \Rightarrow C'_1 = 0$ $y(L) = 0 \Rightarrow \sqrt{-\lambda} = \frac{2\pi n}{\tau}, n \in \mathbb{Z}$ $\lambda_n = -\left(\frac{2\pi n}{L}\right)^2 \qquad y_n = C\sin\left(\frac{2\pi n}{L}x\right)$

• Energy balance for an elastic column:

$$EI\frac{d^2y}{dx^2} + Py = 0$$

• Beyond what value of the pressure, ${\cal P}$, will an elastic column buckle?

- Is there an "eigendecomposition" for non-square matrices? Yes!
 - For: $\mathbf{A} \in \mathbb{R}^{N \times M}$
 - $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\dagger}$
 - with: $\mathbf{U} \in \mathbb{C}^{N imes N}$ $\boldsymbol{\Sigma} \in \mathbb{R}^{N imes M}$ $\mathbf{V} \in \mathbb{C}^{M imes M}$
 - and $\mathbf{V}^{\dagger} = ar{\mathbf{V}}^T$
 - Σ has only diagonal elements which are positive:

$$\boldsymbol{\Sigma} = \begin{pmatrix} \Sigma_{11} & 0 & 0 \\ 0 & \Sigma_{22} & 0 \\ 0 & 0 & \ddots \end{pmatrix}$$

ullet U and V are called the left and right singular vectors.

- Properties of the singular value decomposition:
 - $\bullet~{\bf U}\, {\text{and}}~{\bf V}~$ are unitary matrices
 - $\mathbf{U}\mathbf{U}^{\dagger}=\mathbf{I}$, $\mathbf{V}\mathbf{V}^{\dagger}=\mathbf{I}$
 - $\bullet \mathbf{A}^{\dagger}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\dagger})^{\dagger}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\dagger} = \mathbf{V}\boldsymbol{\Sigma}^{\dagger}\boldsymbol{\Sigma}\mathbf{V}^{\dagger}$
 - $\bullet~{\bf V}~$ are the eigenvectors of ${\bf A}^{\dagger}{\bf A}$
 - Σ_{ii}^2 are the eigenvalues of $\mathbf{A}^{\dagger}\mathbf{A}$
 - $\bullet \mathbf{A}\mathbf{A}^{\dagger} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\dagger}(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\dagger})^{\dagger} = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{\dagger}\mathbf{U}^{\dagger}$
 - U are the eigenvectors of $\mathbf{A}\mathbf{A}^{\dagger}$
 - Σ_{ii}^2 are the eigenvalues of $\mathbf{A}\mathbf{A}^\dagger$
 - Σ_{ii} are called the singular values of A.

- Properties of the singular value decomposition: $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\dagger}$
 - Some columns of Σ are zero. The columns of V corresponding to these span $\mathcal{N}(\mathbf{A})$
 - Some columns of Σ are non-zero. The rows of U corresponding to these span $\mathcal{R}(A)$

• Example:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{bmatrix} \mathsf{U},\mathsf{S},\mathsf{V} \end{bmatrix} = \mathsf{svd}(\mathsf{A})$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{I} =$

• Example:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{\Sigma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• How is singular value decomposition used?

- Example: data compression/matrix approximation
 - Left: original bitmap
 - Right: compressed bitmap retaining only 50 biggest singular values. All other set equal to zero.

- How is singular value decomposition used?
 - Least squares solution to: $\mathbf{A}\mathbf{x}=\mathbf{b}$
 - with $\mathbf{A} \in \mathbb{R}^{N imes M}$ $\mathbf{x} \in \mathbb{R}^{M}$ $\mathbf{b} \in \mathbb{R}^{N}$
 - Least squares means find the vector ${\bf x}$ that minimizes: $\phi({\bf x}) = \|{\bf A}{\bf x} {\bf b}\|_2^2$

• where
$$Ax - b = U \left(\Sigma V^{\dagger}x - U^{\dagger}b \right)$$

• Let
$$\mathbf{y} = \mathbf{V}^\dagger \mathbf{x}$$
 and $\mathbf{p} = \mathbf{U}^\dagger \mathbf{b}$

- then $\phi(\mathbf{x}) = \|\mathbf{U}(\mathbf{\Sigma}\mathbf{y} \mathbf{p})\|_2^2 = \|(\mathbf{\Sigma}\mathbf{y} \mathbf{p})\|_2^2$
- Let r be the number of non-zero singular values (also the rank of \mathbf{A}_r):

• then
$$\phi(\mathbf{x}) = \sum_{i=1}^{r} |\Sigma_{ii}y_i - p_i|^2 + \sum_{i=r+1}^{r} |p_i|^2$$

- How is singular value decomposition used?
 - Least squares solution to: $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - with $\mathbf{A} \in \mathbb{R}^{N imes M}$ $\mathbf{x} \in \mathbb{R}^{M}$ $\mathbf{b} \in \mathbb{R}^{N}$
 - and $\mathbf{y} = \mathbf{V}^\dagger \mathbf{x}$ $\mathbf{p} = \mathbf{U}^\dagger \mathbf{b}$
 - Minimizes: $\phi(\mathbf{x}) = \sum_{i=1}^{r} |\Sigma_{ii}y_i - p_i|^2 + \sum_{i=r+1}^{N} |p_i|^2$
 - Therefore, $y_i = \frac{p_i}{\sum_{ii}}$ for $1 \le i \le r$
 - What about y_i for $r+1 \le i \le M$?
 - Least squares system is underdetermined
 - Just set: $y_i=0$ for the rest and find $\mathbf{x}=\mathbf{V}\mathbf{y}$ is

Iterative Solutions to Lin. Eqns.

- Gaussian elimination or eigenvalue decomposition require ${\cal O}(N^3)$ operations to complete.
- For many problems of practical interest (solutions to PDEs in particular) N can be so large that these calculations are infeasible.
- An alternative approach seeking approximate solutions to linear equations is more commonly employed.
- These algorithms are based on iterative refinement of an initial guess.
 - For: Ax = b
 - An iterative map might look like: $\mathbf{x}_{i+1} = \mathbf{C}\mathbf{x}_i + \mathbf{c}$
 - The map is converged when: $\mathbf{x}_{i+1} = \mathbf{x}_i$

• The converged
$$\mathbf{x}_i$$
 is a solution if:
 $\mathbf{x}_i = \left(\mathbf{I} - \mathbf{C}
ight)^{-1} \mathbf{c} = \mathbf{A}^{-1} \mathbf{b}$

14

Iterative Solutions to Lin. Eqns.

• Example: solve iteratively

$$\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\mathbf{x}=\left(\begin{array}{cc}1\\0\end{array}\right)$$

• split:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• rename:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}_{i+1} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \mathbf{x}_i + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

• iterate:
$$\mathbf{x}_{i+1} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \mathbf{x}_i + \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Jacobi Iteration

- For: Ax = b
 - Split ${f A}$ into ${f D}+{f R}$
 - ullet D is the diagonal elements of ${f A}$
 - ullet R is the off-diagonal elements of A
- Rewrite the equations as an iterative map:
 - $\mathbf{D}\mathbf{x}_{i+1} = -\mathbf{R}\mathbf{x}_i + \mathbf{b}$
 - or $\mathbf{x}_{i+1} = \mathbf{D}^{-1} \left(-\mathbf{R}\mathbf{x}_i + \mathbf{b} \right)$
- If the iterations converge, then $(\mathbf{D}+\mathbf{R})\mathbf{x}_i=\mathbf{b}$
 - We have found the solution (if map converges)!
- Jacobi iteration transforms a hard problem, ${\bf A}^{-1}{\bf b}$, into a succession of easy problems, ${\bf D}^{-1}{\bf c}$

Jacobi Iteration

- For: Ax = b
 - Split A into $\mathbf{D} + \mathbf{R}$
 - ullet \mathbf{D} is the diagonal elements of \mathbf{A}
 - ullet R is the off-diagonal elements of A
- Rewrite the equations as an iterative map:

•
$$\mathbf{x}_{i+1} = \mathbf{D}^{-1} \left(-\mathbf{R}\mathbf{x}_i + \mathbf{b} \right)$$

- Does Jacobi converge to the right solution \mathbf{x} ?
 - Substitute: $\mathbf{b} = \mathbf{A}\mathbf{x}$
 - Then: $x_{i+1} x = -D^{-1}R(x_i x)$

• Take the norm of both sides:
$$\frac{\|\mathbf{x}_{i+1} - \mathbf{x}\|_p}{\|\mathbf{x}_i - \mathbf{x}\|_p} \le \|\mathbf{D}^{-1}\mathbf{R}\|_p$$

Jacobi Iteration

• The ratio of absolute error in successive iterates is:

$$\frac{\|\mathbf{x}_{i+1} - \mathbf{x}\|_p}{\|\mathbf{x}_i - \mathbf{x}\|_p} \le \|\mathbf{D}^{-1}\mathbf{R}\|_p$$

• If this is less than one, the error gets smaller after each iteration. The iterative map converges!

• When is
$$\|\mathbf{D}^{-1}\mathbf{R}\|_p < 1$$
?

 Consider the ∞-norm of a matrix which gives the maximum row sum:

 $j \neq i$

$$\|\mathbf{D}^{-1}\mathbf{R}\|_{\infty} = \max_{i} \sum_{j \neq i} |A_{ii}^{-1}A_{ij}|$$

- $\|\mathbf{D}^{-1}\mathbf{R}\|_{\infty} < 1$ when $|A_{ii}| > \sum |A_{ij}|$
- A is "diagonally dominant"

Gauss-Seidel Iteration

- For: Ax = b
 - Split ${\bf A}$ into ${\bf L}+{\bf U}$
 - ullet L is the lower triangular elements of ${f A}$
 - ullet U is the upper triangular elements (no diagonal)
- Rewrite the equations as an iterative map:

•
$$\mathbf{L}\mathbf{x}_{i+1} = -\mathbf{U}\mathbf{x}_i + \mathbf{b}$$

- or $\mathbf{x}_{i+1} = \mathbf{L}^{-1}(-\mathbf{U}\mathbf{x}_i + \mathbf{b})$
- Again, successive calculations of ${f L}^{-1}{f c}$ are easier than ${f A}^{-1}{f b}$
- Does Gauss-Seidel converge? Yes if, $\|\mathbf{L}^{-1}\mathbf{U}\|_p < 1$
 - This happens for diagonally dominant and symmetric, positive definite matrices ($\lambda_i > 0$).

Iterative Solutions to Lin. Eqns.

• Example:

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$\mathbf{x}_{exact} = (3/4, 1/2, 1/4)$$

• Try Jacobi:
$$\mathbf{x}_0 = (1, 0, 0)$$

$$\mathbf{x}_{i+1} = \mathbf{D}^{-1} \left(-\mathbf{R}\mathbf{x}_i + \mathbf{b} \right)$$

• Try Gauss-Seidel: $\mathbf{x}_0 = (1, 0, 0)$

$$\mathbf{x}_{i+1} = \mathbf{L}^{-1}(-\mathbf{U}\mathbf{x}_i + \mathbf{b})$$

Iterative Solutions to Lin. Eqns.

• Example:

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$\mathbf{x}_{exact} = (3/4, 1/2, 1/4)$$

• Results

iteration	R.E. Jacobi	R.E. Gauss-Seidel
Ι	38%	40%
2	26%	20%
3	19%	10%
5	9.5%	2.5%
10	I.7%	0.08%

Successive Over Relaxation

- For equations that that do not converge under Jacobi/ Gauss-Seidel or any other iterative scheme, there are ways to modify the procedure to force convergence.
 - Suppose we have an iterative map: $\mathbf{x}_{i+1} = \mathbf{f}(\mathbf{x}_i)$
 - that gives the sought after solution when $\mathbf{x}_{i+1} = \mathbf{x}_i$
 - the function $\mathbf{f}(\mathbf{x})$ need not be linear in general
 - We modify the map so that:
 - $\mathbf{x}_{i+1} = (1-\omega)\mathbf{x}_i + \omega \mathbf{f}(\mathbf{x}_i)$
 - where the correct solution is still given when $\mathbf{x}_{i+1} = \mathbf{x}_i$
 - where ω is called the relaxation parameter.
 - This new iterative map can damp out any wild fluctuations from one iteration to the next by choosing values: $0 < \omega < 1$

Successive Over Relaxation

- When this damping is applied to Jacobi:
 - The original iterative map: $\mathbf{x}_{i+1} = \mathbf{D}^{-1} \left(-\mathbf{R}\mathbf{x}_i + \mathbf{b} \right)$
 - Becomes: $\mathbf{x}_{i+1} = (1-\omega)\mathbf{x}_i + \omega \mathbf{D}^{-1}(-\mathbf{R}\mathbf{x}_i + \mathbf{b})$
 - Matrices that are not diagonally dominant might converge when $\,\omega\,$ is small enough
- When this dampling is applied to Gauss-Seidel:
 - The original iterative map: $\mathbf{x}_{i+1} = \mathbf{L}^{-1}(-\mathbf{U}\mathbf{x}_i + \mathbf{b})$
 - Becomes: $\mathbf{x}_{i+1} = (1-\omega)\mathbf{x}_i + \omega \mathbf{L}^{-1}(-\mathbf{U}\mathbf{x}_i + \mathbf{b})$
 - The relaxation parameter acts like an effective increase in the eigenvalues of the matrix. A small enough value can enable convergence.
- Successive over relaxation might be slow, however.

10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.