

10.34: Numerical Methods

Applied to

Chemical Engineering

Lecture 6:

Singular value decomposition

Iterative solutions of linear equations

1

Recap

• Eigenvalues

• Eigenvectors

• Eigendecomposition

2

Recap
d

2

• Find the eigenvalues and eigenfunctions of:
dx

2

d

2

y = Ay, y(0) = 0, y(L) = 0
dx

2

3

Recap
d

2

• Find the eigenvalues and eigenfunctions of:
dx

2

d

2

y = Ay, y(0) = 0, y(L) = 0
dx

2
p p
Ax - Ax y = C1e + C2e

p p
y = C1

0
cos(Ax) + C2

0
sin(Ax)

y(0) = 0) C1
0 = 0

p 2⇡n
y(L) = 0) �A = , n 2 Z

L
✓
2⇡n

◆2 ✓
2⇡n

◆

 n = yn = C sin x
L L

4

Problem 2 (40 points) –

Problem statement:

As demonstrated in class, a column will buckle when the load applied axially exceeds a critical
value. We will attempt to approximate that critical load numerically. The governing equation for
the deflection of a loaded beam normal to its axis, y(x), as a function of the position along its axis
x is:

(1)

where EI is the product of the elastic modulus and the area moment of inertia of the beam and P

is applied the axial load. The beam is pinned at x = 0 and x = L such that there is no deflection
at those locations. This equation admits the trivial solution y(x) = 0 for which the column is
straight. However, non-trivial solutions corresponding to the shapes of buckled columns can be
found as well.

Numerically, we are seeking the smallest axial load P for which these non-trivial solutions exist.
Let {x1, x2, . . . xN} be a discrete set of N points along the axis of the column. The points are

uniformly distributed so that x(N)
i = i x for i = 1, 2, . . . N with x = L/(N + 1). The deflection

at those points is yi = y(xi). Note, this set does not include the end points, x = 0 and x = L, since
the deflection at those points is known, y(0) = y(L) = 0. Using a finite di↵erence approximation
for the second derivative, equation 1 can be written as a system of N equations for N unknown
values of the deflection, yi:

EI

(x)2

0

BBBBBBB@

�2 1
1 �2 1

1 �2 1
. . .

. . .
. . .

1 �2 1
1 �2

1

CCCCCCCA

·

0

BBBBBBB@

y1

y2

y3
...

yN�1

yN

1

CCCCCCCA

= �P

0

BBBBBBB@

y1

y2

y3
...

yN�1

yN

1

CCCCCCCA

. (2)

The empty spaces in the above matrix represent zeros.

4

Recap

• Energy balance for an elastic column:

d

2
y

EI + Py = 0,

dx

2

•	 Beyond what value of the pressure, P , will an elastic
column buckle?

5

y
P

x

Singular Value Decomposition

•	 Is there an “eigendecomposition” for non-square
matrices? Yes!

•	 For: A 2 RN⇥M

•	 A = U⌃V†

•	 with: U 2 CN⇥N ⌃ 2 RN⇥M V 2 CM⇥M

•	 and V† = V̄T

• ⌃ has only diagonal elements which are positive:

⌃ =

0

B@

⌃11 0 0
1

0 ⌃22 0
.

CA

0 0 . .

• U and V are called the left and right singular vectors.
7

Singular Value Decomposition

• Properties of the singular value decomposition:

• U and V are unitary matrices

• UU† = I , VV† = I

•A†A = (U⌃V†)†U⌃V† = V⌃†⌃V†

• V are the eigenvectors of A†A

• ⌃2 are the eigenvalues of A†Aii

•AA† = U⌃V†(U⌃V†)† = U⌃⌃†U†

• U are the eigenvectors of AA†

⌃2• are the eigenvalues of AA†
ii

• ⌃ii are called the singular values of A .
8

Singular Value Decomposition

• Properties of the singular value decomposition: A = U⌃V†

•	 Some columns of ⌃ are zero. The columns of V
corresponding to these span N (A)

•	 Some columns of ⌃ are non-zero. The rows of U
corresponding to these span R(A)

•	 Example: 0
1 0 0 0

1

A = 0 1 0 0 [U,S,V] = svd(A)@	 A

0 0 1 0 0	
1 0 0 0

10	
1 0 0

1 0
1 0 0 0

1

0 1 0 0
U	 = 0 1 0 ⌃ = 0 1 0 0 V =

B C
@ A @	 A B
0 0 1 0

C
0 0 1 0 0 1 0

@	 A

0 0 0 1
9

•

Singular Value Decomposition

• Example:

0
1 0 0

1

0 1 0

A =

B C
B
0 0 1

C@ A

0 0 0

0
1 0 0 0

1

⌃ =

0

BB

1 0 0

0 1 0

1

CC

0
1 0 0

1

V = 0 1 0@ A

0 0 1

B 0 1 0 0 C
B C
U =

0 0 1 0
@ A

0 0 0 1

@
 0 0 1
A

0 0 0

10

SVD compressed with 30 terms

20 40 60 80 100 120 140 160

50

100

150

200

250

SVD compressed with 165 terms

20 40 60 80 100 120 140 160

50

100

150

200

250

Singular Value Decomposition

•	 How is singular value decomposition used?

•	 Example: data compression/matrix approximation

•	 Left: original bitmap

•	 Right: compressed bitmap retaining only 50 biggest

singular values. All other set equal to zero.

11

Singular Value Decomposition

•	 How is singular value decomposition used?

•	 Least squares solution to: Ax = b

• with A 2 RN⇥M
x 2 RM b 2 RN

• Least squares means find the vector

minimizes: ¢(x) = kAx - bk
22

x that

• where Ax - b = U

⌃V

†
x -U

†
b

•	 Let
y = V†

x and p = U†b

• then ¢(x) = kU(⌃y - p)k
22
 = k(⌃y - p)k
22

•	 Let r be the number of non-zero singular values
(also the rank of A):

r	 N

• then ¢(x) =
X

|⌃iiyi - pi|2 +
X

|pi|2

i=1 i=r+1

12

Singular Value Decomposition
• How is singular value decomposition used?

• Least squares solution to: Ax = b

• with A 2 RN⇥M
x 2 RM b 2 RN

• and
y = V†

x p = U†b

• Minimizes:
r N

¢(x) =
X

|⌃iiyi - pi|2 +
X

|pi|2

i=1 i=r+1

• Therefore, yi =
pi

for 1 i r

⌃ii

• What about yi for r + 1 i M?

• Least squares system is underdetermined

• Just set: yi = 0 for the rest and find x = Vy 13

Iterative Solutions to Lin. Eqns.
•	 Gaussian elimination or eigenvalue decomposition

require O(N3) operations to complete.

•	 For many problems of practical interest (solutions to

PDEs in particular) N can be so large that these

calculations are infeasible.

• An alternative approach seeking approximate solutions

to linear equations is more commonly employed.

•	 These algorithms are based on iterative refinement of an

initial guess.

•	 For:
Ax = b

•	 An iterative map might look like:
xi+1 = Cxi + c

•	 The map is converged when:
xi+1 = xi

•	 The converged xi is a solution if:
�1

xi	 = (I � C) c = A

�1
b 14

Iterative Solutions to Lin. Eqns.

• Example: solve iteratively

✓
1 1

◆ ✓
1

◆

x =
0 1 0

✓
1 0

◆ ✓
0 1

◆ ✓
1

◆
• split:

x + x =
0 1 0 0 0

✓
1 0

◆ ✓
0 -1

◆ ✓
1

◆
• rename: xi+1 = xi +0 1 0 0 0

✓
0 -1

◆ ✓
1

◆
• iterate: xi+1 = xi +0 0 0

15

Jacobi Iteration

• For:

Ax = b

• Split A into D + R

• D is the diagonal elements of A

• R is the off-diagonal elements of A

• Rewrite the equations as an iterative map:

• Dxi+1 = -Rxi + b

• or
xi+1 = D 1 (-Rxi + b)

• If the iterations converge, then (D + R)xi = b

• We have found the solution (if map converges)!

• Jacobi iteration transforms a hard problem, A 1b, into
D 1a succession of easy problems, c

16

Jacobi Iteration

• For: Ax = b

• Split A into D + R

• D is the diagonal elements of A

• R is the off-diagonal elements of A

• Rewrite the equations as an iterative map:

• xi+1 = D 1 (-Rxi + b)

• Does Jacobi converge to the right solution
x ?

• Substitute:
b = Ax

• Then:
xi+1 - x = -D

 1
R(xi - x)

• Take the norm of both sides: kxi+1 - xkp kD-1
Rkpkxi - xkp 17

Jacobi Iteration
• The ratio of absolute error in successive iterates is:

kxi+1 - xkp kD -1
Rkpkxi - xkp

• If this is less than one, the error gets smaller after

each iteration. The iterative map converges!

•	 When is kD�1Rkp < 1 ?

•	 Consider the ∞-norm of a matrix which gives the
maximum row sum:

kD�1Rk1 = max
X

|A�1Aij |
iii

j 6=i

•	 kD�1Rk1 < 1 when |Aii| >
X

|Aij |
=i•	 A is “diagonally dominant”

j 6
18

Gauss-Seidel Iteration

•	 For: Ax = b

•	 Split A into L + U

•	 L is the lower triangular elements of A

•	 U is the upper triangular elements (no diagonal)

•	 Rewrite the equations as an iterative map:

•	 Lxi+1 = -Uxi + b

or 	xi+1 = L 1(-Uxi + b)•
L-1	 A-1b•	 Again, successive calculations of c are easier than

•	 Does Gauss-Seidel converge? Yes if, kL 1Ukp < 1

•	 This happens for diagonally dominant and symmetric,

positive definite matrices (Ai > 0).

19

Iterative Solutions to Lin. Eqns.

• Example:

0
 1

A

x =

0

@

1

2 �1 0
�1 2 �1
0 �1 2

1

@
 0
 A

0

x

exact = (3/4, 1/2, 1/4)

• Try Jacobi:
x0 = (1, 0, 0)

xi+1 = D 1 (-Rxi + b)

• Try Gauss-Seidel:
x0 = (1, 0, 0)

xi+1 = L 1(-Uxi + b)

20

Iterative Solutions to Lin. Eqns.

• Example:

0
 1

A

x =

0

@

1

2 �1 0
�1 2 �1
0 �1 2

1

@
 0
 A

0

x

exact = (3/4, 1/2, 1/4)

• Results

iteration R.E. Jacobi R.E. Gauss-Seidel

1 38% 40%

2 26% 20%

3 19% 10%

5 9.5% 2.5%

10 1.7% 0.08%
21

Successive Over Relaxation
•	 For equations that that do not converge under Jacobi/

Gauss-Seidel or any other iterative scheme, there are
ways to modify the procedure to force convergence.

•	 Suppose we have an iterative map: xi+1 = f(xi)

•	 that gives the sought after solution when xi+1 = xi

•	 the function f(x) need not be linear in general

•	 We modify the map so that:

•	 xi+1 = (1� !)xi + !f(xi)

•	 where the correct solution is still given when xi+1 = xi

•	 where ! is called the relaxation parameter.

•	 This new iterative map can damp out any wild

fluctuations from one iteration to the next by

choosing values: 0 < ! < 1
 22

Successive Over Relaxation
•	 When this damping is applied to Jacobi:

• The original iterative map: xi+1 = D 1 (-Rxi + b)

• Becomes: xi+1 = (1- !)xi + !D 1(-Rxi + b)

•	 Matrices that are not diagonally dominant might
converge when ! is small enough

•	 When this dampling is applied to Gauss-Seidel:

• The original iterative map: xi+1 = L 1(-Uxi + b)

• Becomes: xi+1 = (1- !)xi + !L 1(-Uxi + b)

•	 The relaxation parameter acts like an effective
increase in the eigenvalues of the matrix. A small
enough value can enable convergence.

•	 Successive over relaxation might be slow, however.
23

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

