
   
  

 

 

 

10.34: Numerical Methods
 
Applied to
 

Chemical Engineering
 

Lecture 6:
 
Singular value decomposition
 

Iterative solutions of linear equations
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Recap
 

• Eigenvalues 

• Eigenvectors 

• Eigendecomposition
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Recap 
d

2 

• Find the eigenvalues and eigenfunctions of: 
dx

2 

d

2 

y = Ay, y(0) = 0, y(L) = 0
dx

2 
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Recap 
d

2 

• Find the eigenvalues and eigenfunctions of: 
dx

2 

d

2 

y = Ay, y(0) = 0, y(L) = 0
dx

2 
p p
Ax - Ax y = C1e + C2e

p p
y = C1 

0 
cos(  Ax) +  C2 

0 
sin(  Ax) 

y(0) = 0 ) C1 
0 = 0  

p 2⇡n 
y(L) = 0 ) �A = , n 2 Z

L 
✓ 
2⇡n 

◆2 ✓ 
2⇡n 

◆ 

 n =  yn = C sin x 
L L 
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Problem 2 (40 points) –

Problem statement:

As demonstrated in class, a column will buckle when the load applied axially exceeds a critical
value. We will attempt to approximate that critical load numerically. The governing equation for
the deflection of a loaded beam normal to its axis, y(x), as a function of the position along its axis
x is:

(1)

where EI is the product of the elastic modulus and the area moment of inertia of the beam and P

is applied the axial load. The beam is pinned at x = 0 and x = L such that there is no deflection
at those locations. This equation admits the trivial solution y(x) = 0 for which the column is
straight. However, non-trivial solutions corresponding to the shapes of buckled columns can be
found as well.

Numerically, we are seeking the smallest axial load P for which these non-trivial solutions exist.
Let {x1, x2, . . . xN} be a discrete set of N points along the axis of the column. The points are

uniformly distributed so that x(N)
i = i x for i = 1, 2, . . . N with  x = L/(N + 1). The deflection

at those points is yi = y(xi). Note, this set does not include the end points, x = 0 and x = L, since
the deflection at those points is known, y(0) = y(L) = 0. Using a finite di↵erence approximation
for the second derivative, equation 1 can be written as a system of N equations for N unknown
values of the deflection, yi:

EI

( x)2

0

BBBBBBB@

�2 1
1 �2 1

1 �2 1
. . .

. . .
. . .

1 �2 1
1 �2

1

CCCCCCCA

·

0

BBBBBBB@

y1

y2

y3
...

yN�1

yN

1

CCCCCCCA

= �P

0

BBBBBBB@

y1

y2

y3
...

yN�1

yN

1

CCCCCCCA

. (2)

The empty spaces in the above matrix represent zeros.
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Recap
 

• Energy balance for an elastic column:
 

d

2
y

EI + Py  = 0,

dx

2 

•	 Beyond what value of the pressure, P , will an elastic 
column buckle? 

5 

y 
P 

x 



  
 

 

 

 

       

             

Singular Value Decomposition
 

•	 Is there an “eigendecomposition” for non-square 
matrices? Yes! 

•	 For: A 2 RN⇥M 

•	 A = U⌃V† 

•	 with: U 2 CN⇥N ⌃ 2 RN⇥M V 2 CM⇥M 

•	 and V† = V̄T 

• ⌃ has only diagonal elements which are positive: 

⌃ =
 

0 

B@
 

⌃11 0 0
1 

0 ⌃22 0 
. 

CA 

0 0 . . 

• U and V are called the left and right singular vectors. 
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Singular Value Decomposition
 

• Properties of the singular value decomposition: 

• U and V are unitary matrices 

• UU† = I , VV† = I 

•A†A = (U⌃V†)†U⌃V† = V⌃†⌃V† 

• V are the eigenvectors of A†A 

• ⌃2 are the eigenvalues of A†Aii 

•AA† = U⌃V†(U⌃V†)† = U⌃⌃†U† 

• U are the eigenvectors of AA† 

⌃2• are the eigenvalues of AA† 
ii 

• ⌃ii are called the singular values of A . 
8 



 

             
  

             
  

Singular Value Decomposition
 

• Properties of the singular value decomposition: A = U⌃V† 

•	 Some columns of ⌃ are zero. The columns of V 
corresponding to these span N (A) 

•	 Some columns of ⌃ are non-zero. The rows of U 
corresponding to these span R(A) 

•	 Example: 0 
1 0 0 0

1 

A = 0 1 0 0  [U,S,V] = svd(A)@	 A
 

0 0 1 0  0	 
1 0 0 0

10	 
1 0 0

1 0 
1 0 0 0

1 

0 1 0 0
U	 = 0 1 0  ⌃ = 0 1 0 0  V =

B C
@ A @	 A B
0 0 1 0

C
0 0 1  0 0 1 0  

@	 A 

0 0 0 1  
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Singular Value Decomposition
 

• Example: 

0 
1 0 0

1
 

0 1 0 
  
A =

B C
B
0 0 1

C@ A 

0 0 0  

0 
1 0 0 0

1
 

⌃ =
 

0 

BB


1 0 0 
  
0 1 0 
  

1 

CC


0 
1 0 0

1
 

V = 0 1 0@ A 

0 0 1  

B 0 1 0 0 C
B C
U =
 
0 0 1 0 
@ A
 

0 0 0 1 


@
 0 0 1 
A
 

0 0 0 
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SVD compressed with 30 terms
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Singular Value Decomposition
 
•	 How is singular value decomposition used? 

•	 Example: data compression/matrix approximation 

•	 Left: original bitmap 

•	 Right: compressed bitmap retaining only 50 biggest 

singular values. All other set equal to zero.
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Singular Value Decomposition
 
•	 How is singular value decomposition used? 

•	 Least squares solution to: Ax = b 

• with A 2 RN⇥M 
x 2 RM b 2 RN 

• Least squares means find the vector 

minimizes: ¢(x) = kAx - bk
22 

x that 


• where Ax - b = U
 
⌃V

† 
x -U

†
b

 

•	 Let 
y = V† 

x and p = U†b 

• then ¢(x) = kU(⌃y - p)k
22
 = k(⌃y - p)k
22
 

•	 Let r be the number of non-zero singular values 
(also the rank of A ): 

r	 N

• then ¢(x) =
X 

|⌃iiyi - pi|2 + 
X 

|pi|2
 

i=1 i=r+1
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Singular Value Decomposition 
• How is singular value decomposition used? 

• Least squares solution to: Ax = b 

• with A 2 RN⇥M 
x 2 RM b 2 RN 

• and 
y = V† 

x p = U†b 

• Minimizes: 
r N

¢(x) =
X 

|⌃iiyi - pi|2 + 
X 

|pi|2 

i=1 i=r+1 

• Therefore, yi = 
pi 

for 1  i  r

⌃ii
 

• What about yi for r + 1  i  M? 

• Least squares system is underdetermined
 

• Just set: yi = 0  for the rest and find x = Vy 13 



   
               

    
         

 

  
   

  
 

 

 

  

         

Iterative Solutions to Lin. Eqns.
•	 Gaussian elimination or eigenvalue decomposition 


require O(N3) operations to complete.
 

•	 For many problems of practical interest (solutions to
 
PDEs in particular) N can be so large that these 

calculations are infeasible.
 

• An alternative approach seeking approximate solutions
 
to linear equations is more commonly employed.
 

•	 These algorithms are based on iterative refinement of an 

initial guess.
 

•	 For: 
Ax = b 

•	 An iterative map might look like: 
xi+1 = Cxi + c 

•	 The map is converged when: 
xi+1 = xi 

•	 The converged xi is a solution if: 
�1 

xi	 = (I � C) c = A

�1
b 14 



   
 

Iterative Solutions to Lin. Eqns.

• Example: solve iteratively 

✓ 
1 1

◆ ✓ 
1

◆ 

x = 
0 1  0 

✓ 
1 0

◆ ✓ 
0 1

◆ ✓ 
1

◆
• split: 

x + x = 
0 1 0 0  0 

✓ 
1 0

◆ ✓ 
0 -1

◆ ✓ 
1

◆
• rename: xi+1 = xi +0 1  0 0  0 

✓ 
0 -1 

◆ ✓ 
1 

◆
• iterate: xi+1 = xi +0 0 0 
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Jacobi Iteration
 
• For: 

Ax = b 

• Split A into D + R 

• D is the diagonal elements of A 

• R is the off-diagonal elements of A 

• Rewrite the equations as an iterative map: 

• Dxi+1 = -Rxi + b 

• or 
xi+1 = D 1 (-Rxi + b) 

• If the iterations converge, then (D + R)xi = b 

• We have found the solution (if map converges)! 

• Jacobi iteration transforms a hard problem, A 1b, into 
D 1a succession of easy problems, c 
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Jacobi Iteration
 
• For: Ax = b 

• Split A into D + R 

• D is the diagonal elements of A 

• R is the off-diagonal elements of A
 

• Rewrite the equations as an iterative map: 

• xi+1 = D 1 (-Rxi + b) 

• Does Jacobi converge to the right solution 
x ?
 

• Substitute: 
b = Ax 

• Then: 
xi+1 - x = -D

 1
R(xi - x)
 

• Take the norm of both sides: kxi+1 - xkp  kD-1
Rkpkxi - xkp 17 



 
  

     
  

                          

  
    

                          

       

Jacobi Iteration 
• The ratio of absolute error in successive iterates is:
 

kxi+1 - xkp  kD -1
Rkpkxi - xkp 

• If this is less than one, the error gets smaller after 

each iteration. The iterative map converges!
 

•	 When is kD�1Rkp < 1 ? 

•	 Consider the ∞-norm of a matrix which gives the 
maximum row sum: 

kD�1Rk1 = max 
X 

|A�1Aij |
iii
 
j 6=i 

•	 kD�1Rk1 < 1 when |Aii| > 
X 

|Aij |
=i•	 A is “diagonally dominant” 

j 6
18 



 
 

      

      

          

  

 

             

    

    
              

Gauss-Seidel Iteration
 
•	 For: Ax = b 

•	 Split A into L + U 

•	 L is the lower triangular elements of A 

•	 U is the upper triangular elements (no diagonal) 

•	 Rewrite the equations as an iterative map: 

•	 Lxi+1 = -Uxi + b 

or 	xi+1 = L 1(-Uxi + b)• 
L-1	 A-1b•	 Again, successive calculations of c are easier than 

•	 Does Gauss-Seidel converge? Yes if, kL 1Ukp < 1 

•	 This happens for diagonally dominant and symmetric,
 
positive definite matrices ( Ai > 0 ).
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Iterative Solutions to Lin. Eqns.

• Example: 

0
 1

A

x =
 

0

@
 

1

2 �1 0 
�1 2 �1 
0 �1 2 

1
 
@
 0
 A
 

0
 

x

exact = (3/4, 1/2, 1/4) 

• Try Jacobi: 
x0 = (1, 0, 0) 

xi+1 = D 1 (-Rxi + b) 

• Try Gauss-Seidel: 
x0 = (1, 0, 0) 

xi+1 = L 1(-Uxi + b) 
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Iterative Solutions to Lin. Eqns.

• Example: 

0
 1

A

x =
 

0

@
 

1

2 �1 0 
�1 2 �1 
0 �1 2 

1
 
@
 0
 A
 

0
 

x

exact = (3/4, 1/2, 1/4) 

• Results 

iteration R.E. Jacobi R.E. Gauss-Seidel 

1 38% 40% 

2 26% 20% 

3 19% 10% 

5 9.5% 2.5% 

10 1.7% 0.08% 
21 



  
  

   

 

          

  

 

  

        

   
  

  

Successive Over Relaxation 
•	 For equations that that do not converge under Jacobi/ 

Gauss-Seidel or any other iterative scheme, there are 
ways to modify the procedure to force convergence. 

•	 Suppose we have an iterative map: xi+1 = f(xi) 

•	 that gives the sought after solution when xi+1 = xi
 

•	 the function f(x) need not be linear in general 

•	 We modify the map so that: 

•	 xi+1 = (1� !)xi + !f(xi) 

•	 where the correct solution is still given when xi+1 = xi 

•	 where ! is called the relaxation parameter. 

•	 This new iterative map can damp out any wild
 
fluctuations from one iteration to the next by 

choosing values: 0 < ! < 1
 22 



     

 

 

 
        

     

  

 

 
    

 

 

 

Successive Over Relaxation 
•	 When this damping is applied to Jacobi: 

• The original iterative map: xi+1 = D 1 (-Rxi + b) 

• Becomes: xi+1 = (1- !)xi + !D 1(-Rxi + b) 

•	 Matrices that are not diagonally dominant might 
converge when ! is small enough 

•	 When this dampling is applied to Gauss-Seidel: 

• The original iterative map: xi+1 = L 1(-Uxi + b) 

• Becomes: xi+1 = (1- !)xi + !L 1(-Uxi + b) 

•	 The relaxation parameter acts like an effective 
increase in the eigenvalues of the matrix. A small 
enough value can enable convergence. 

•	 Successive over relaxation might be slow, however. 
23 
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