I0.34: Numerical Methods Applied to Chemical Engineering

Lecture 6:
Singular value decomposition Iterative solutions of linear equations

Recap

- Eigenvalues
- Eigenvectors
- Eigendecomposition

Recap

- Find the eigenvalues and eigenfunctions of: $\frac{d^{2}}{d x^{2}}$

$$
\frac{d^{2}}{d x^{2}} y=\lambda y, \quad y(0)=0, y(L)=0
$$

Recap

- Find the eigenvalues and eigenfunctions of: $\frac{d^{2}}{d x^{2}}$

$$
\begin{gathered}
\frac{d^{2}}{d x^{2}} y=\lambda y, \quad y(0)=0, y(L)=0 \\
y=C_{1} e^{\sqrt{\lambda} x}+C_{2} e^{-\sqrt{\lambda} x} \\
y=C_{1}^{\prime} \cos (\sqrt{-\lambda} x)+C_{2}^{\prime} \sin (\sqrt{-\lambda} x) \\
y(0)=0 \Rightarrow C_{1}^{\prime}=0 \\
y(L)=0 \Rightarrow \sqrt{-\lambda}=\frac{2 \pi n}{L}, n \in \mathbb{Z} \\
\lambda_{n}=-\left(\frac{2 \pi n}{L}\right)^{2} \quad y_{n}=C \sin \left(\frac{2 \pi n}{L} x\right)
\end{gathered}
$$

Recap

- Energy balance for an elastic column:

$$
E I \frac{d^{2} y}{d x^{2}}+P y=0
$$

- Beyond what value of the pressure, P, will an elastic column buckle?

Singular Value Decomposition

- Is there an "eigendecomposition" for non-square matrices? Yes!
- For: $\mathbf{A} \in \mathbb{R}^{N \times M}$
- $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}$
- with: $\mathbf{U} \in \mathbb{C}^{N \times N} \quad \boldsymbol{\Sigma} \in \mathbb{R}^{N \times M} \quad \mathbf{V} \in \mathbb{C}^{M \times M}$
- and $\mathbf{V}^{\dagger}=\overline{\mathbf{V}}^{T}$
- Σ has only diagonal elements which are positive:

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\Sigma_{11} & 0 & 0 \\
0 & \Sigma_{22} & 0 \\
0 & 0 & \ddots
\end{array}\right)
$$

- \mathbf{U} and \mathbf{V} are called the left and right singular vectors.

Singular Value Decomposition

- Properties of the singular value decomposition:
- \mathbf{U} and \mathbf{V} are unitary matrices
- $\mathbf{U U}^{\dagger}=\mathbf{I}, \quad \mathbf{V} \mathbf{V}^{\dagger}=\mathbf{I}$
- $\mathbf{A}^{\dagger} \mathbf{A}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}\right)^{\dagger} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}=\mathbf{V} \boldsymbol{\Sigma}^{\dagger} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}$
- \mathbf{V} are the eigenvectors of $\mathbf{A}^{\dagger} \mathbf{A}$
- $\Sigma_{i i}^{2}$ are the eigenvalues of $\mathbf{A}^{\dagger} \mathbf{A}$
- $\mathbf{A A}^{\dagger}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}\right)^{\dagger}=\mathbf{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\dagger} \mathbf{U}^{\dagger}$
- \mathbf{U} are the eigenvectors of $\mathbf{A A}^{\dagger}$
- $\Sigma_{i i}^{2}$ are the eigenvalues of $\mathbf{A} \mathbf{A}^{\dagger}$
- $\Sigma_{i i}$ are called the singular values of \mathbf{A}.

Singular Value Decomposition

- Properties of the singular value decomposition: $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\dagger}$
- Some columns of $\boldsymbol{\Sigma}$ are zero. The columns of \mathbf{V} corresponding to these span $\mathcal{N}(\mathbf{A})$
- Some columns of $\boldsymbol{\Sigma}$ are non-zero. The rows of \mathbf{U} corresponding to these span $\mathcal{R}(\mathbf{A})$
- Example:

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{A})
$$

$$
\mathbf{U}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \boldsymbol{\Sigma}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \mathbf{V}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Singular Value Decomposition

- Example:

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\mathbf{U}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \boldsymbol{\Sigma}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \mathbf{V}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Singular Value Decomposition

- How is singular value decomposition used?

- Example: data compression/matrix approximation
- Left: original bitmap
- Right: compressed bitmap retaining only 50 biggest singular values. All other set equal to zero.

Singular Value Decomposition

- How is singular value decomposition used?
- Least squares solution to: $\mathbf{A x}=\mathbf{b}$
- with $\mathbf{A} \in \mathbb{R}^{N \times M} \mathbf{x} \in \mathbb{R}^{M} \quad \mathbf{b} \in \mathbb{R}^{N}$
- Least squares means find the vector \mathbf{x} that minimizes: $\phi(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$
- where $\mathbf{A x}-\mathbf{b}=\mathbf{U}\left(\mathbf{\Sigma} \mathbf{V}^{\dagger} \mathbf{x}-\mathbf{U}^{\dagger} \mathbf{b}\right)$
- Let $\mathbf{y}=\mathbf{V}^{\dagger} \mathbf{x}$ and $\mathbf{p}=\mathbf{U}^{\dagger} \mathbf{b}$
- then $\phi(\mathbf{x})=\|\mathbf{U}(\boldsymbol{\Sigma} \mathbf{y}-\mathbf{p})\|_{2}^{2}=\|(\boldsymbol{\Sigma} \mathbf{y}-\mathbf{p})\|_{2}^{2}$
- Let r be the number of non-zero singular values (also the rank of ${\underset{r}{r}}^{\mathbf{A}}$):
- then $\phi(\mathbf{x})=\sum_{i=1}^{r}\left|\Sigma_{i i} y_{i}-p_{i}\right|^{2}+\sum_{i=r+1}^{N}\left|p_{i}\right|^{2}$

Singular Value Decomposition

- How is singular value decomposition used?
- Least squares solution to: $\mathbf{A x}=\mathbf{b}$
- with $\mathbf{A} \in \mathbb{R}^{N \times M} \mathbf{x} \in \mathbb{R}^{M} \mathbf{b} \in \mathbb{R}^{N}$
- and $\mathbf{y}=\mathbf{V}^{\dagger} \mathbf{x} \quad \mathbf{p}=\mathbf{U}^{\dagger} \mathbf{b}$
- Minimizes:

$$
\phi(\mathbf{x})=\sum_{i=1}^{r}\left|\Sigma_{i i} y_{i}-p_{i}\right|^{2}+\sum_{i=r+1}^{N}\left|p_{i}\right|^{2}
$$

- Therefore, $y_{i}=\frac{p_{i}}{\sum_{i i}}$ for $1 \leq i \leq r$
- What about y_{i} for $r+1 \leq i \leq M$?
- Least squares system is underdetermined
- Just set: $y_{i}=0$ for the rest and find $\mathbf{x}=\mathbf{V y}$

Iterative Solutions to Lin. Eqns.

- Gaussian elimination or eigenvalue decomposition require $O\left(N^{3}\right)$ operations to complete.
- For many problems of practical interest (solutions to PDEs in particular) N can be so large that these calculations are infeasible.
- An alternative approach seeking approximate solutions to linear equations is more commonly employed.
- These algorithms are based on iterative refinement of an initial guess.
- For: $\mathbf{A x}=\mathbf{b}$
- An iterative map might look like: $\mathbf{x}_{i+1}=\mathbf{C} \mathbf{x}_{i}+\mathbf{c}$
- The map is converged when: $\mathbf{x}_{i+1}=\mathbf{x}_{i}$
- The converged \mathbf{x}_{i} is a solution if:

$$
\mathbf{x}_{i}=(\mathbf{I}-\mathbf{C})^{-1} \mathbf{c}=\mathbf{A}^{-1} \mathbf{b}
$$

Iterative Solutions to Lin. Eqns.

- Example: solve iteratively

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \mathbf{x}=\binom{1}{0}
$$

- split: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \mathbf{x}+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \mathbf{x}=\binom{1}{0}$
- rename: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \mathbf{x}_{i+1}=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right) \mathbf{x}_{i}+\binom{1}{0}$
- iterate: $\mathbf{x}_{i+1}=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right) \mathbf{x}_{i}+\binom{1}{0}$

Jacobi Iteration

- For: $\mathbf{A x}=\mathbf{b}$
- Split \mathbf{A} into $\mathbf{D}+\mathbf{R}$
- \mathbf{D} is the diagonal elements of \mathbf{A}
- \mathbf{R} is the off-diagonal elements of \mathbf{A}
- Rewrite the equations as an iterative map:
- $\mathbf{D x}_{i+1}=-\mathbf{R} \mathbf{x}_{i}+\mathbf{b}$
- or $\mathbf{x}_{i+1}=\mathbf{D}^{-1}\left(-\mathbf{R} \mathbf{x}_{i}+\mathbf{b}\right)$
- If the iterations converge, then $(\mathbf{D}+\mathbf{R}) \mathbf{x}_{i}=\mathbf{b}$
- We have found the solution (if map converges)!
- Jacobi iteration transforms a hard problem, $\mathbf{A}^{-1} \mathbf{b}$, into a succession of easy problems, $\mathbf{D}^{-1} \mathbf{c}$

Jacobi Iteration

- For: $\mathbf{A x}=\mathbf{b}$
- Split \mathbf{A} into $\mathbf{D}+\mathbf{R}$
- \mathbf{D} is the diagonal elements of \mathbf{A}
- \mathbf{R} is the off-diagonal elements of \mathbf{A}
- Rewrite the equations as an iterative map:
- $\mathbf{x}_{i+1}=\mathbf{D}^{1}\left(-\mathbf{R} \mathbf{x}_{i}+\mathbf{b}\right)$
- Does Jacobi converge to the right solution \mathbf{x} ?
- Substitute: $\mathbf{b}=\mathbf{A x}$
- Then: $\mathbf{x}_{i+1}-\mathbf{x}=-\mathbf{D}^{-1} \mathbf{R}\left(\mathbf{x}_{i}-\mathbf{x}\right)$
- Take the norm of both sides: $\frac{\left\|\mathbf{x}_{i+1}-\mathbf{x}\right\|_{p}}{\left\|\mathbf{x}_{i}-\mathbf{x}\right\|_{p}} \leq\left\|\mathbf{D}^{-1} \mathbf{R}\right\|_{p}$

Jacobi Iteration

- The ratio of absolute error in successive iterates is:

$$
\frac{\left\|\mathbf{x}_{i+1}-\mathbf{x}\right\|_{p}}{\left\|\mathbf{x}_{i}-\mathbf{x}\right\|_{p}} \leq\left\|\mathbf{D}^{-1} \mathbf{R}\right\|_{p}
$$

- If this is less than one, the error gets smaller after each iteration. The iterative map converges!
- When is $\left\|\mathbf{D}^{-1} \mathbf{R}\right\|_{p}<1$?
- Consider the ∞-norm of a matrix which gives the maximum row sum:

$$
\left\|\mathbf{D}^{-1} \mathbf{R}\right\|_{\infty}=\max _{i} \sum_{j \neq i}\left|A_{i i}^{-1} A_{i j}\right|
$$

- $\left\|\mathbf{D}^{-1} \mathbf{R}\right\|_{\infty}<1$ when $\left|A_{i i}\right|>\sum\left|A_{i j}\right|$
- \mathbf{A} is "diagonally dominant"

Gauss-Seidel Iteration

- For: $\mathbf{A x}=\mathbf{b}$
- Split \mathbf{A} into $\mathbf{L}+\mathbf{U}$
- \mathbf{L} is the lower triangular elements of \mathbf{A}
- \mathbf{U} is the upper triangular elements (no diagonal)
- Rewrite the equations as an iterative map:
- $\mathbf{L x}_{i+1}=-\mathbf{U} \mathbf{x}_{i}+\mathbf{b}$
- or $\mathbf{x}_{i+1}=\mathbf{L}^{-1}\left(-\mathbf{U} \mathbf{x}_{i}+\mathbf{b}\right)$
- Again, successive calculations of $\mathbf{L}^{-1} \mathbf{c}$ are easier than $\mathbf{A}^{-1} \mathbf{b}$
- Does Gauss-Seidel converge? Yes if, $\left\|\mathbf{L}^{-1} \mathbf{U}\right\|_{p}<1$
- This happens for diagonally dominant and symmetric, positive definite matrices $\left(\lambda_{i}>0\right)$.

Iterative Solutions to Lin. Eqns.

- Example:

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\mathbf{x}_{\text {exact }}=(3 / 4,1 / 2,1 / 4)
\end{gathered}
$$

- Try Jacobi: $\mathbf{x}_{0}=(1,0,0)$

$$
\mathbf{x}_{i+1}=\mathbf{D}^{1}\left(-\mathbf{R} \mathbf{x}_{i}+\mathbf{b}\right)
$$

- Try Gauss-Seidel: $\mathbf{x}_{0}=(1,0,0)$

$$
\mathbf{x}_{i+1}=\mathbf{L}^{1}\left(-\mathbf{U} \mathbf{x}_{i}+\mathbf{b}\right)
$$

Iterative Solutions to Lin. Eqns.

- Example:

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\mathbf{x}_{\text {exact }}=(3 / 4,1 / 2,1 / 4)
\end{gathered}
$$

- Results

iteration	R.E. Jacobi	R.E. Gauss-Seidel
I	38%	40%
2	26%	20%
3	19%	10%
5	9.5%	2.5%
10	1.7%	0.08%

Successive Over Relaxation

- For equations that that do not converge under Jacobi/ Gauss-Seidel or any other iterative scheme, there are ways to modify the procedure to force convergence.
- Suppose we have an iterative map: $\mathbf{x}_{i+1}=\mathbf{f}\left(\mathbf{x}_{i}\right)$
- that gives the sought after solution when $\mathbf{x}_{i+1}=\mathbf{x}_{i}$
- the function $\mathbf{f}(\mathbf{x})$ need not be linear in general
- We modify the map so that:
- $\mathbf{x}_{i+1}=(1-\omega) \mathbf{x}_{i}+\omega \mathbf{f}\left(\mathbf{x}_{i}\right)$
- where the correct solution is still given when $\mathbf{x}_{i+1}=\mathbf{x}_{i}$
- where ω is called the relaxation parameter.
- This new iterative map can damp out any wild fluctuations from one iteration to the next by choosing values: $0<\omega<1$

Successive Over Relaxation

- When this damping is applied to Jacobi:
- The original iterative map: $\mathbf{x}_{i+1}=\mathbf{D}^{1}\left(-\mathbf{R} \mathbf{x}_{i}+\mathbf{b}\right)$
- Becomes: $\mathbf{x}_{i+1}=(1-\omega) \mathbf{x}_{i}+\omega \mathbf{D}^{-1}\left(-\mathbf{R} \mathbf{x}_{i}+\mathbf{b}\right)$
- Matrices that are not diagonally dominant might converge when ω is small enough
- When this dampling is applied to Gauss-Seidel:
- The original iterative map: $\mathbf{x}_{i+1}=\mathbf{L}{ }^{1}\left(-\mathbf{U} \mathbf{x}_{i}+\mathbf{b}\right)$
- Becomes: $\mathbf{x}_{i+1}=(1-\omega) \mathbf{x}_{i}+\omega \mathbf{L}^{-1}\left(-\mathbf{U} \mathbf{x}_{i}+\mathbf{b}\right)$
- The relaxation parameter acts like an effective increase in the eigenvalues of the matrix. A small enough value can enable convergence.
- Successive over relaxation might be slow, however.

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

