10.34: Numerical Methods Applied to Chemical Engineering

Lecture 5:
Eigenvalues and eigenvectors

Permutation

- Reordering through use of permutation matrices:
- Consider the operation of swapping two rows. This can be done through matrix multiplication.

- For example:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3}
\end{array}\right)
$$

Permutation

- Reordering through use of permutation matrices:
- Consider the operation of swapping two rows. This can be done through matrix multiplication.
$P=\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \leftarrow \\ 0 & 0 & 0 & \ldots & 1\end{array}\right) \quad$ identity

$$
\boldsymbol{P} \boldsymbol{A}=\left(\begin{array}{llll}
\boldsymbol{P} \boldsymbol{A}_{1}^{C} & \boldsymbol{P} \boldsymbol{A}_{2}^{C} & \ldots & \boldsymbol{P} \boldsymbol{A}_{N}^{C}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{A}_{2}^{R} \\
\boldsymbol{A}_{1}^{R} \\
\boldsymbol{A}_{3}^{R} \\
\vdots \\
\boldsymbol{A}_{N}^{R}
\end{array}\right)
$$

Permutation

- Reordering through use of permutation matrices:
- How do I swap columns?

$$
\boldsymbol{A} \boldsymbol{P}^{T}=\left(\boldsymbol{P} \boldsymbol{A}^{T}\right)^{T}
$$

- Permutation matrices are unitary:

$$
\begin{aligned}
& \mathbf{P} \mathbf{P}^{T}=\mathbf{I} \\
& \mathbf{P}^{T}=\mathbf{P}^{-1}
\end{aligned}
$$

- Reordering a system of equations:

$$
\left(\boldsymbol{P}_{1} \boldsymbol{A} \boldsymbol{P}_{2}^{T}\right)\left(\boldsymbol{P}_{2} \boldsymbol{x}\right)=\boldsymbol{P}_{1} \boldsymbol{b}
$$

- Reordering is a form of preconditioning!
- Reordering can be used for pivoting!

Recap

- Gaussian elimination
- Sparse matrices
- Permutation and reordering

Recap

- Example: Plinko:

- Derive a sparse matrix model that maps the probability of the chip location from one level to the next.

$$
\mathbf{P}^{i+1}=\mathbf{A P}^{i}
$$

Recap

$$
\begin{aligned}
& \mathbf{P}^{i+1}=\mathbf{A P}^{i} \\
& \text { - A=spdiags(ones(N,2)/2, [-1 1], N, N); }
\end{aligned}
$$

- $A(1,2)=1 ; ~ A(N, N-1)=1$;

Recap

 $$
\mathbf{P}^{i+1}=\mathbf{A} \mathbf{P}^{i}
$$
 - A=spdiags(ones(N,2)/2, [-1 1], N, N);

- $A(1,2)=1 ; ~ A(N, N-1)=1$;

Recap

- Notice that after many cycles, the probability distribution becomes "constant." AAAA . . . AP ${ }_{0}$
- In fact there are special distributions such that:

$$
(\mathbf{A A}) \mathbf{P}=\mathbf{P}
$$

- What are examples of those distributions?
- They are called eigenvectors of the matrix: $\mathbf{B}=\mathbf{A A}$

Eigenvalues and Eigenvectors

- The eigenvectors of a matrix are special vectors that are "stretched" on multiplication by the matrix:

$$
\mathbf{A} \mathbf{w}=\lambda \mathbf{w}
$$

$$
\mathbf{A} \in \mathbb{R}^{N \times N} \quad \mathbf{w} \in \mathbb{C}^{N} \quad \lambda \in \mathbb{C}
$$

- The amount of stretch λ is called the eigenvalue
- Finding an eigenvector/eigenvalue involves solving:
- N equations
- which are nonlinear ($\lambda \mathbf{w}$)
- for $N+1$ unknowns
- Eigenvectors are not unique:
- If \mathbf{w} is an eigenvector, so is $c \mathbf{w}$

Eigenvalues

- Finding eigenvalues:

$$
\mathbf{A} \mathbf{w}=\lambda \mathbf{w} \Rightarrow(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=0
$$

- either $\mathbf{w}=0$
- or $\mathbf{w} \in \mathcal{N}(\mathbf{A}-\lambda \mathbf{I})$ and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$
- For the right values of $\lambda, \mathbf{A}-\lambda \mathbf{I}$ is singular!
- $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0=p^{N}(\lambda)$
- $p^{N}(\lambda)$ is called the characteristic polynomial.
- The N roots of $p^{N}(\lambda)$ are the eigenvalues of
- $p^{N}(\lambda)=c\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{N}-\lambda\right)$

Eigenvalues

- Examples:

$$
\begin{aligned}
& \text { • } \mathbf{A}=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \\
& \mathbf{A}-\lambda \mathbf{I}=\left(\begin{array}{ccc}
-2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right) \\
& \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(-2-\lambda)(1-\lambda)(3-\lambda)=0 \\
& \lambda=-2,1,3
\end{aligned}
$$

- The elements of a diagonal matrix are eigenvalues
- $\mathbf{A}=\left(\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right)$

Eigenvalues

- Examples:
- The elements of a diagonal matrix are eigenvalues:

$$
\begin{array}{r}
0=\operatorname{det}\left(\begin{array}{cccc}
A_{11}-\lambda & 0 & \ldots & 0 \\
0 & A_{22}-\lambda & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & A_{N N}-\lambda
\end{array}\right) \\
=\left(A_{11}-\lambda\right)\left(A_{22}-\lambda\right) \ldots\left(A_{N N}-\lambda\right) .
\end{array}
$$

- The diagonal elements of a triangular matrix are eigenvalues too:

$$
\begin{array}{r}
0=\operatorname{det}\left(\begin{array}{cccc}
A_{11}-\lambda & A_{12} & \ldots & A_{1 N} \\
0 & A_{22}-\lambda & \ldots & A_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & A_{N N}-\lambda
\end{array}\right) \\
=\left(A_{11}-\lambda\right)\left(A_{22}-\lambda\right) \ldots\left(A_{N N}-\lambda\right) .
\end{array}
$$

Eigenvalues

- Properties of eigenvalues: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Inferred from the properties of polynomial equations!
- $p^{N}(\lambda)$ is a polynomial of degree N and has no more than N roots. A has up to N distinct eigenvalues.
- The eigenvalues, like the factors of a polynomial need not be distinct. Multiple roots are possible, e.g.

$$
p^{N}(\lambda)=c\left(\lambda-\lambda_{1}\right)^{2}\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{N-1}\right)
$$

- Eigenvalues may be real or complex. Complex eigenvalues appear in conjugate pairs: λ, λ
- $\operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2} \ldots \lambda_{N}$
- $\operatorname{tr}(\mathbf{A})=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}$

Eigenvalues

- Example:

- Conservation equation:

$$
\frac{d}{d t}\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right)=\left(\begin{array}{cccc}
-k_{1} & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} \\
0 & 0 & k_{4} & -k_{5}
\end{array}\right)\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right) .
$$

- Find the characteristic polynomial of the rate matrix:

$$
\begin{aligned}
0=\operatorname{det}\left(\begin{array}{cccc}
-k_{1}-\lambda & 0 & 0 & 0 \\
k_{1} & -k_{2}-\lambda & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4}-\lambda & k_{5} \\
0 & 0 & k_{4} & -k_{5}-\lambda
\end{array}\right) \\
\operatorname{det}(\mathbf{A})=\sum_{j=1}^{N}(-1)^{i+j} A_{i j} M_{i j}(\mathbf{A})
\end{aligned}
$$

- What are the eigenvalues of the rate matrix?
- What are they physically?

Eigenvalues

- Example:
- A series of chemical reactions: $\mathrm{A} \xrightarrow{k_{1}} \mathrm{~B} \underset{k_{3}}{\stackrel{k_{2}}{k_{2}}} \mathrm{C} \underset{k_{5}}{k_{4}} \mathrm{D}$.
- Conservation equation:

$$
\frac{d}{d t}\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right)=\left(\begin{array}{cccc}
-k_{1} & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} \\
0 & 0 & k_{4} & -k_{5}
\end{array}\right)\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right) .
$$

- Find the characteristic polynomial of the rate matrix:

$$
\begin{aligned}
0 & =\operatorname{det}\left(\begin{array}{cccc}
-k_{1}-\lambda & 0 & 0 & 0 \\
k_{1} & -k_{2}-\lambda & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4}-\lambda & k_{5} \\
0 & 0 & k_{4} & -k_{5}-\lambda
\end{array}\right) \\
& =\lambda\left(\lambda+k_{1}\right)\left[\lambda^{2}+\left(k_{2}+k_{3}+k_{4}+k_{4}\right) \lambda+k_{2} k_{4}+k_{2} k_{5}+k_{3} k_{5}\right]
\end{aligned}
$$

- What are the eigenvalues of the rate matrix?
- What are they physically?

Eigenvectors

- Finding eigenvectors:
- Given an eigenvalue: λ_{i}, what is the corresponding eigenvector: \mathbf{w}_{i} ?
- The eigenvector belongs to the null space of $\mathbf{A}-\lambda_{i} \mathbf{I}$
- The eigenvector is not unique: $\mathbf{A}\left(c \mathbf{w}_{i}\right)=\lambda_{i}\left(c \mathbf{w}_{i}\right)$
- One option: do Gaussian elimination on $\left[\mathbf{A}-\lambda_{i} \mathbf{I} \mid \mathbf{0}\right]$
- At some point the eliminated matrix will look like:

$$
\left(\begin{array}{cccc|ccc}
U_{11} & U_{12} & \ldots & U_{1 r} & u_{1(r+1)} & \ldots & U_{1 M} \\
0 & U_{22} & \ldots & U_{2 r} & u_{2(r+1)} & \ldots & U_{2 M} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & U_{r r} & u_{r(r+1)} & \ldots & U_{r M} \\
\hline 0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & \underline{0} & \ldots & 0
\end{array}\right)
$$

- These $r-N$ components of \mathbf{w}_{i} are arbitrary
- \# of all zero rows = multiplicity of eigenvalue

Eigenvectors

- Examples:
- Find the eigenvectors of: $\mathbf{A}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right)$

$$
\begin{aligned}
& \lambda_{1}=-2, \lambda_{2}=1, \lambda_{3}=3 \\
& {[\mathbf{A}+2 \mathbf{I} \mid \mathbf{0}]=\left[\begin{array}{lll|l}
0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 5 & 0
\end{array}\right]} \\
& \mathbf{w}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{A}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

- What are the others?

Eigenvectors

- Example:

- Conservation equation:

$$
\frac{d}{d t}\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right)=\left(\begin{array}{cccc}
-k_{1} & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} \\
0 & 0 & k_{4} & -k_{5}
\end{array}\right)\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right) .
$$

- Find the eigenvector of the rate matrix with eigenvalue 0:

$$
\left[\begin{array}{cccc|c}
-k_{1} & 0 & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} & 0 \\
0 & 0 & k_{4} & -k_{5} & 0
\end{array}\right]
$$

- What does this eigenvector represent?

Eigenvectors

- Example:
- A series of chemical reactions: $\mathrm{A} \xrightarrow{\frac{k_{1}}{\longrightarrow}} \mathrm{~B} \underset{k_{3}}{\frac{k_{2}}{2}} \mathrm{C} \underset{k_{5}}{\stackrel{k_{4}}{4}} \mathrm{D}$.
- Conservation equation:

$$
\frac{d}{d t}\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right)=\left(\begin{array}{cccc}
-k_{1} & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} \\
0 & 0 & k_{4} & -k_{5}
\end{array}\right)\left(\begin{array}{c}
{[A]} \\
{[B]} \\
{[C]} \\
{[D]}
\end{array}\right) .
$$

- Find the eigenvector of the rate matrix with eigenvalue 0 :

$$
\left[\begin{array}{cccc|c}
-k_{1} & 0 & 0 & 0 & 0 \\
k_{1} & -k_{2} & k_{3} & 0 & 0 \\
0 & k_{2} & -k_{3}-k_{4} & k_{5} & 0 \\
0 & 0 & k_{4} & -k_{5} & 0
\end{array}\right]
$$

- What does this eigenvector represent?

Eigenvectors

- Example:
- Find the eigenvalues and linearly ind. eigenvectors:

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

- Find the eigenvalues and linearly ind. eigenvectors:

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Eigenvectors

- Example:
- Find the eigenvalues and linearly ind. eigenvectors:

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad \begin{gathered}
p(\lambda)=\lambda^{2} \\
\lambda=0,0 \\
\text { algebraic multiplicity }=2
\end{gathered} \quad \mathbf{w}=\binom{1}{0},\binom{0}{1}
$$

- Find the eigenvalues and linearly ind. eigenvectors:

$$
\begin{aligned}
\mathbf{A}= & \left.\begin{array}{ll}
p(\lambda)=\lambda^{2} \\
0 & 1 \\
0 & 0
\end{array}\right) \\
& \begin{array}{ll}
p=0,0 & \mathbf{w}=\left(\begin{array}{l}
1 \\
0 \\
\text { algebraic multiplicity }=2
\end{array}\right. \\
\text { geometric multiplicity }=1
\end{array}
\end{aligned}
$$

Eigenvectors

- Example:
- Find the eigenvalues and linearly ind. eigenvectors:

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Eigenvectors

- Properties of eigenvectors:
- If an eigenvalue is distinct (algebraic multiplicity I):
- $\operatorname{dim} \mathcal{N}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right)=1$
- There is only one corresponding eigenvector
- If an eigenvalue has algebraic multiplicity M :
- $1 \leq \operatorname{dim} \mathcal{N}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \leq M$
- There could be as many as M linearly independent eigenvectors.
- Geometric multiplicity is the number of linear independent eigenvectors for an eigenvalue:

$$
\lim _{\mathcal{L}} \mathcal{N}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right)
$$

- When geometric and algebraic multiplicity are the same, the matrix is said to have a "complete set" of eigenvectors.

Eigendecomposition

- For a matrix with a complete set of eigenvectors one can write:

$$
\mathbf{A W}=\mathbf{W} \mathbf{\Lambda}
$$

- where $\mathbf{W}=\left(\begin{array}{llll}\mathbf{w}_{1} & \mathbf{w}_{2} & \ldots & \mathbf{w}_{N}\end{array}\right)$
- and

$$
\boldsymbol{\Lambda}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{N}
\end{array}\right)
$$

- equivalently: $\boldsymbol{\Lambda}=\mathbf{W}^{-1} \mathbf{A W}$
- the matrix can be diagonalized
- equivalently: $\mathbf{A}=\mathbf{W} \mathbf{\Lambda} \mathbf{W}^{-1}$
- the matrix can be easily reconstructed

Eigendecomposition

- Solving systems of equations is easy when a complete set of eigenvectors and eigenvalues are known:

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{W} \boldsymbol{\Lambda} \mathbf{W}^{-1} \mathbf{x}=\mathbf{b}
$$

- step I: $\boldsymbol{\Lambda}\left(\mathbf{W}^{-1} \mathbf{x}\right)=\mathbf{W}^{-1} \mathbf{b} \Rightarrow \boldsymbol{\Lambda} \mathbf{y}=\mathbf{c}$
- step 2: $\mathbf{y}=\boldsymbol{\Lambda}^{-1} \mathbf{c} \Rightarrow \mathbf{W}^{-1} \mathbf{x} \mathbf{\Lambda}^{-1} \mathbf{W}^{-1} \mathbf{b}$
- step 3: $\mathbf{x}=\mathbf{W} \boldsymbol{\Lambda}^{-1} \mathbf{W}^{-1} \mathbf{b}$
- But how is \mathbf{W}^{-1} computed?
- $\left(\mathbf{W}^{-1}\right)^{T}$ are the eigenvectors of \mathbf{A}^{T}
- If $\mathbf{A}=\mathbf{A}^{T}$ and $\left\|\mathbf{w}_{i}\right\|_{2}=1$, then $\mathbf{W}^{-1}=\mathbf{W}^{T}$
- Eigenvalue matrix is unitary: $\mathbf{W} \mathbf{W}^{T}=\mathbf{I}$
- Eigenvectors are orthogonal: $\mathbf{w}_{i} \cdot \mathbf{w}_{j}=\delta_{i j}$

Eigendecomposition

- Useful when analyzing linear systems of ordinary differential equations:

$$
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}
$$

- substitute: $\mathbf{A}=\mathbf{W} \boldsymbol{\Lambda} \mathbf{W}^{-1}$
- let: $\mathbf{y}(t)=\mathbf{W}^{-1} \mathbf{x}(t)$
- then: $\dot{\mathbf{y}}(t)=\boldsymbol{\Lambda y}(t)$ or $\dot{y}_{i}(t)=\lambda_{i} y_{i}(t)$
- The system of ODEs is decoupled and easy to solve!
- What if there is not a complete set of eigenvectors?
- Matrix cannot be diagonalized.
- Components cannot be decoupled.
- Jordan Normal Form: $\mathbf{A}=\mathbf{M} \mathbf{J M}^{-1}$
- \mathbf{J} is almost diagonal

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

