10.34: Numerical Methods Applied to Chemical Engineering

Lecture 4:
Gaussian elimination
Sparse matrices

Recap

- Vector spaces
- Linear dependence
- Existence and uniqueness of solutions
- Four fundamental subspaces

Recap

- What is the column space of a matrix?
- What is the null space of a matrix?
- What are the conditions for existence and uniqueness of solutions to linear equations?

Easy to Solve Linear Equations

- Diagonal:
- Go row by row

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

- Triangular:
- Back substitution

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

- Goal: transform complicated equations into easy ones

Gaussian Elimination

- Solving N equations with N unknowns:
- Example: $\begin{array}{cccc}2 x_{1} & -x_{2} & 0 & =0 \\ -x_{1} & +2 x_{2} & -x_{3} & =1 \\ 0 & -x_{2} & +2 x_{3} & =0\end{array}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& {\left[\begin{array}{ccc|c}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 1 \\
0 & -1 & 2 & 0
\end{array}\right]}
\end{aligned}
$$

- Convert to triangular form using elementary row operations
- (row $)_{1} \rightarrow c(\text { row })_{1}$
- (row) $)_{1} \rightarrow a(\text { row })_{1}+b(\text { row })_{2}$
- (row) $)_{1} \leftrightarrow(\text { row })_{2}$

Gaussian Elimination

- Solving N equations with N unknowns:
- Example: $\left[\begin{array}{ccc|c}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 1 \\ 0 & -1 & 2 & 0\end{array}\right]$
- step I: $(\text { row })_{2} \rightarrow(\text { row })_{2}+(1 / 2)(\text { row })_{1}$

$$
\left[\begin{array}{ccc|c}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 1 \\
0 & -1 & 2 & 0
\end{array}\right]
$$

- step 2: $\quad(\text { row })_{3} \rightarrow(\text { row })_{3}+(2 / 3)(\text { row })_{2}$

$$
\left[\begin{array}{ccc|c}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 1 \\
0 & 0 & 4 / 3 & 2 / 3
\end{array}\right]
$$

- solve by back substitution.

Gaussian Elimination

- Solving N equations with N unknowns:
- Example: $\left[\begin{array}{cccc|c}A_{11} & A_{12} & \ldots & A_{1 N} & b_{1} \\ A_{21} & A_{22} & \ldots & A_{2 N} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \\ A_{N 1} & A_{N 2} & \ldots & A_{N N} & b_{N}\end{array}\right]$
- step I, select pivot: $A_{11} \quad \lambda_{k 1}=A_{k 1} / A_{11}$
- step 2, do row operations: (row $)_{k} \rightarrow(\text { row })_{k}-\lambda_{k 1}(\text { row })_{1} k>1$

$$
\left[\begin{array}{cccc|c}
A_{11} & A_{12} & \ldots & A_{1 N} & b_{1} \\
0 & A_{22}-\lambda_{21} A_{12} & \ldots & A_{2 N}-\lambda_{21} A_{1 N} & b_{2}-\lambda_{21} b_{1} \\
\vdots & \vdots & \ddots & \vdots & \\
0 & A_{N 2}-\lambda_{N 1} A_{12} & \cdots & A_{N N}-\lambda_{N 1} A_{1 N} & b_{N}-\lambda_{N 1} b_{1}
\end{array}\right]
$$

- step 3, select pivot: $A_{22}-\lambda_{21} A_{12} \quad \lambda_{k 2}=A_{k 2} /\left(A_{22}-\lambda_{21} A_{12}\right)$
- step 4, do row operations: $(\text { row })_{k} \rightarrow(\text { row })_{k}-\lambda_{k 2}(\text { row })_{2} \quad k>2$
- rinse and repeat until upper triangular
- solve by back substitution

Gaussian Elimination

- Gaussian elimination requires how many operations?
- Is Gaussian elimination reliable (stable)?
- Example:

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

- Partial pivoting:
- If a selected pivot is zero, perform an additional row operation and reselect the pivot.
- Swap the pivot row for a row with a non-zero pivot: (row) ${ }_{k} \leftrightarrow$ (row $)_{l}$
- What if all potential pivots are zero?

Gaussian Elimination

- Gaussian elimination requires how many operations?
- Is Gaussian elimination reliable (stable)?
- Example:

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

- Partial pivoting:
- If a selected pivot is zero, perform an additional row operation and reselect the pivot.
- Swap the pivot row for a row with a non-zero pivot: (row) ${ }_{k} \leftrightarrow$ (row $)_{l}$
- What if all potential pivots are zero?

Gaussian Elimination

- Pivoting to improve accuracy:
- Example with three digit accuracy: $\left[\begin{array}{cc|c}10^{-4} & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$
- eliminate first column:

$$
\left[\begin{array}{cc|c}
10^{-4} & 1 & 1 \\
0 & -1.00 \times 10^{4} & -1.00 \times 10^{4}
\end{array}\right]
$$

- solve by back substitution: $x_{1}=0.00 \quad x_{2}=1.00$
- exact solution is: $x_{1}=0.9999 x_{2}=0.9999$
- repeat after swapping rows I and $2 .$. .
- Small pivots can lead to large errors.
- Therefore, many algorithms implement a pivoting strategy that uses the largest available pivot to minimize numerical errors.

Gaussian Elimination

- Example: Gaussian elimination of a sparse $N \times N$ system

- What is the most memory I would need to perform Gaussian elimination?
- What is the least amount of memory I would need to perform Gaussian elimination?
- How should I store the matrix?

Sparse Matrices

- Example: a finite volume model of diffusion

$$
\frac{\partial c}{\partial t}=D \nabla^{2} c
$$

Sparse Matrices

- Example: a finite volume model of diffusion

$$
\frac{\partial c}{\partial t}=D \nabla^{2} c
$$

conserve the flux from one cell to the next
only neighboring cells interact

$$
\mathbf{c}_{i+1}=\mathbf{c}_{i}+\frac{\Delta t D}{\Delta x^{2}} \mathbf{A} \mathbf{c}_{i}
$$

Sparse Matrices

- Example: a finite volume model of diffusion

$$
\frac{\partial c}{\partial t}=D \nabla^{2} c
$$

conserve the flux from one cell to the next
only neighboring cells interact

$$
c_{i+1}^{j+N k}=c_{i+1}^{j+N k}+\frac{\Delta t D}{\Delta x^{2}}\left(c_{i}^{j+1+N k}+c_{i}^{j-1+N k}+c_{i}^{j+N(k+1)}+c_{i}^{j+N(k-1)}-4 c_{i}^{j+N k}\right)
$$

Sparse Matrices

- Example: a finite volume model of diffusion

$$
\frac{\partial c}{\partial t}=D \nabla^{2} c
$$

$c_{i+1}^{j+N k}=c_{i+1}^{j+N k}+\frac{\Delta t D}{\Delta x^{2}}\left(c_{i}^{j+1+N k}+c_{i}^{j-1+N k}+c_{i}^{j+N(k+1)}+c_{i}^{j+N(k-1)}-4 c_{i}^{j+N k}\right)$

Sparse Matrices

- Example: a finite volume model of diffusion

$$
\left.\begin{array}{c}
\frac{\partial c}{\partial t}=D \nabla^{2} c \\
\mathbf{c}_{i+1}=\mathbf{c}_{i}+\frac{\Delta t D}{\Delta x^{2}} \mathbf{A} \mathbf{c}_{i} \\
c_{i+1}^{j+N k}=c_{i+1}^{j+N k}+\frac{\Delta t D}{\Delta x^{2}}\left(c_{i}^{j+1+N k}+c_{i}^{j-1+N k}+c_{i}^{j+N(k+1)}+c_{i}^{j+N(k-1)}-4 c_{i}^{j+N k}\right) \\
\boldsymbol{A}=(
\end{array}\right)
$$

Sparse Matrices

- Example: a finite volume model of diffusion

$$
\mathbf{c}_{i+1}=\mathbf{c}_{i}+\frac{\Delta t D}{\Delta x^{2}} \mathbf{A} \mathbf{c}_{i}
$$

- How many operations to compute $\mathbf{A c} \mathbf{c}_{i}$ when \mathbf{A} is $N^{2} \times N^{2}$
- How much memory to store \mathbf{A} as a full matrix?
- How much memory to store \mathbf{A} as a sparse matrix?

Sparse Matrices

- Example: Gaussian elimination of a structured matrix

- First column eliminated:

$$
\left[\begin{array}{ccccc|c}
\times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& \times \\
& \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& \times
\end{array}\right]
$$

- After elimination:

$$
\left[\begin{array}{ccccc|c}
\times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times \\
& & \times & \times & \times & \times \\
& & & \times & \times & \times \\
& & & & \times & \times
\end{array}\right]
$$

Sparse Matrices

- Example: Gaussian elimination of a structured matrix

- Swap last and first rows and columns:
- After elimination:

$$
\left[\begin{array}{cccccc|c}
\times & & & & & \times & \times \\
& \times & & & & \times & \times \\
& & \times & & & \times & \times \\
& & & \times & & \times & \times \\
& & & & \times & \times & \times \\
& & & & \times & & \times \\
\times & \times & \times & \times & \times & \times & \times
\end{array}\right]
$$

Fill-in

- Gaussian elimination fills in sparse matrices
- The amount of fill-in depends on the sparse structure.
- In general, lower bandwidth sparsity patterns, have smaller amounts of fill-in.
- Bandwidth:

- In the worst case, GE doubles the bandwidth
- There are algorithms that reorder matrices with the goal of minimizing the amount of fill-in.

Fill-in

- Fill-in is reduced by reordering:

780 non-zero
symrcm

490 non-zero
symamd

Permutation

- Reordering through use of permutation matrices:
- Consider the operation of swapping two rows. This can be done through matrix multiplication.
$P=\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \leftarrow \\ 0 & 0 & 0 & \ldots & 1\end{array}\right)$ swap row I and 2
- For example:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3}
\end{array}\right)
$$

Permutation

- Reordering through use of permutation matrices:
- Consider the operation of swapping two rows. This can be done through matrix multiplication.

$$
\boldsymbol{P} \boldsymbol{A}=\left(\begin{array}{llll}
\boldsymbol{P} \boldsymbol{A}_{1}^{C} & \boldsymbol{P} \boldsymbol{A}_{2}^{C} & \ldots & \boldsymbol{P} \boldsymbol{A}_{N}^{C}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{A}_{2}^{R} \\
\boldsymbol{A}_{1}^{R} \\
\boldsymbol{A}_{3}^{R} \\
\vdots \\
\boldsymbol{A}_{N}^{R}
\end{array}\right)
$$

Permutation

- Reordering through use of permutation matrices:
- How do I swap columns?
- Permutation matrices are unitary:

$$
\begin{aligned}
& \mathbf{P} \mathbf{P}^{T}=\mathbf{I} \\
& \mathbf{P}^{T}=\mathbf{P}^{-1}
\end{aligned}
$$

- Reordering a system of equations:

$$
\left(\boldsymbol{P}_{1} \boldsymbol{A} \boldsymbol{P}_{2}^{T}\right)\left(\boldsymbol{P}_{2} \boldsymbol{x}\right)=\boldsymbol{P}_{1} \boldsymbol{b}
$$

- Reordering is a form of preconditioning!
- Reordering can be used for pivoting!

Permutation

- Reordering through use of permutation matrices:
- Permutation matrices are sparse too. How are they stored?
- Example reversing the order of 10 rows:

old position	1	2	3	4	5	6	7	8	9	10
new position	10	9	8	7	6	5	4	3	2	1

- Permutation matrices are sparse too. How are they used?
- $P=\left[\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right]$
- $A=A(P,:)$

Permutation

- Reordering through use of permutation matrices:
- Example:
- $P=\operatorname{symrcm}(A)$;
- figure; spy(A);
- figure; $\operatorname{spy}(A(P, P))$

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering

Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

