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Applied to 

Chemical Engineering

 

Lecture 4: 
Gaussian elimination

Sparse matrices
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Recap

• Vector spaces

• Linear dependence

• Existence and uniqueness of solutions

• Four fundamental subspaces
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Recap

• What is the column space of a matrix?

• What is the null space of a matrix?

• What are the conditions for existence and uniqueness of 
solutions to linear equations?
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Easy to Solve Linear Equations
• Diagonal:

• Go row by row

• Triangular:

• Back substitution

• Goal: transform complicated equations into easy ones
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Gaussian Elimination
• Solving N equations with N unknowns:

• Example:

• Convert to triangular form using elementary row 
operations

•  

•  

•  
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row-view discussed earlier. For instance the row-view of the system of
linear equations:
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,

which can be represented implicitly as the array of numbers:
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Each row in this array is an equation, where the numbers to the left of
the bar are the appropriate coefficients of (x1, x2, x3).

Note that any scalar multiple of an equation (row) will still be
satisfied by the solution vector, (x1, x2, x3). Similarly, any linear combi-
nation of equations (rows) will still be satisfied by the solution vector.
Finally, the ordering of equations (rows) is arbitrary so that they may
be exchanged without affecting the solution. These elementary row
operations change the array of coefficients may be used to eliminate
variables from each row of the above system of equations. They are
denoted as follows:

• replacement of a row, say 1, with a scalar multiple, c, of itself:
(row)1 ! c(row)1.

• replacement of a row, say 1 again, with a linear combination of itself
and another row, say 2: (row)1 ! a(row)1 + b(row)2, where a and b
are scalars.

• exchange of two rows, say 1 and 2 again: (row)1 $ (row)2.

These operations may be used successively to transform the system
of equations into a form that is more easily solved. The aim is to
eliminate the variable x1 from equation 2, then eliminate the variable
x2 from equation 3. This is accomplished by the following sequence
of elementary row operations. Add half of the first row to the second
– the elementary row operation: (row)2 ! (row)2 + (1/2)(row)1 – for
which the result is:
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Each row in this array is an equation, where the numbers to the left of
the bar are the appropriate coefficients of (x1, x2, x3).

Note that any scalar multiple of an equation (row) will still be
satisfied by the solution vector, (x1, x2, x3). Similarly, any linear combi-
nation of equations (rows) will still be satisfied by the solution vector.
Finally, the ordering of equations (rows) is arbitrary so that they may
be exchanged without affecting the solution. These elementary row
operations change the array of coefficients may be used to eliminate
variables from each row of the above system of equations. They are
denoted as follows:

• replacement of a row, say 1, with a scalar multiple, c, of itself:
(row)1 ! c(row)1.

• replacement of a row, say 1 again, with a linear combination of itself
and another row, say 2: (row)1 ! a(row)1 + b(row)2, where a and b
are scalars.

• exchange of two rows, say 1 and 2 again: (row)1 $ (row)2.

These operations may be used successively to transform the system
of equations into a form that is more easily solved. The aim is to
eliminate the variable x1 from equation 2, then eliminate the variable
x2 from equation 3. This is accomplished by the following sequence
of elementary row operations. Add half of the first row to the second
– the elementary row operation: (row)2 ! (row)2 + (1/2)(row)1 – for
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Gaussian Elimination
• Solving N equations with N unknowns:

• Example: 

• step 1:

• step 2: (row)3 ! (row)3 + (2/3)(row)2
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• solve by back substitution.
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Then, add two-thirds of the second row to the third,
(2/3)(row)2:

2

6

4

2 �1 0 0
0 3/2 �1 1
0 0 4/3 2/3

3

7

5

.

Because we have only employed elementary row operations, we have
arrived at an equivalent form for the system of equations:
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The matrix is now in row-echelon form. This requires that all rows
containing a non-zero element in a particular column are above rows
containing zeros in that column. Additionally, the first non-zero entry
in a row is to the right of the first non-zero entry in the row above
it. For a square matrix, the row-echelon for is also described as upper
triangular.

A square matrix in upper triangular form, can be reduced to a
diagonal form directly. The third row corresponds to the equation
(4/3)x3 = 2/3 which has the solution x3 = 1/2. The second row then
corresponds to the equation (3/2)x2 � (1/2) = 1, where the value of
x3 has been substituted in the parentheses. The solution for x2 is
thus x2 = 1. The first row is then the equation 2x1 � (1) = 0, where
the value of x2 has been substituted in the parentheses, and therefore
x1 = 1/2. The solution is x = (1/2, 1, 1/2). This process of solving the
upper triangular system of equations is called back substitution. Gaus-
sian elimination maybe laborious but is highly amenable to numerical
computation. It occurs in two steps:

1. For the system of equations Ax = b, represented as [A|b], use
elementary row operations, to reduce A to its upper triangular form
U : [A|b] ! [U | ˆb].

2. Use back substitution to solve the upper triangular system of equa-
tions, Ux = ˆ

b.

A more general algorithm is as follows. Begin with the system of
equations, Ax = b, where A 2 CN⇥N and x, b 2 CN . This can be
represented as
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Each row in this array is an equation, where the numbers to the left of
the bar are the appropriate coefficients of (x1, x2, x3).

Note that any scalar multiple of an equation (row) will still be
satisfied by the solution vector, (x1, x2, x3). Similarly, any linear combi-
nation of equations (rows) will still be satisfied by the solution vector.
Finally, the ordering of equations (rows) is arbitrary so that they may
be exchanged without affecting the solution. These elementary row
operations change the array of coefficients may be used to eliminate
variables from each row of the above system of equations. They are
denoted as follows:

• replacement of a row, say 1, with a scalar multiple, c, of itself:
(row)1 ! c(row)1.

• replacement of a row, say 1 again, with a linear combination of itself
and another row, say 2: (row)1 ! a(row)1 + b(row)2, where a and b
are scalars.

• exchange of two rows, say 1 and 2 again: (row)1 $ (row)2.

These operations may be used successively to transform the system
of equations into a form that is more easily solved. The aim is to
eliminate the variable x1 from equation 2, then eliminate the variable
x2 from equation 3. This is accomplished by the following sequence
of elementary row operations. Add half of the first row to the second
– the elementary row operation: (row)2 ! (row)2 + (1/2)(row)1 – for
which the result is:
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Then, add two-thirds of the second row to the third, (row)3 ! (row)3 +
(2/3)(row)2:
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Because we have only employed elementary row operations, we have
arrived at an equivalent form for the system of equations:
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The matrix is now in row-echelon form. This requires that all rows
containing a non-zero element in a particular column are above rows
containing zeros in that column. Additionally, the first non-zero entry
in a row is to the right of the first non-zero entry in the row above
it. For a square matrix, the row-echelon for is also described as upper
triangular.

A square matrix in upper triangular form, can be reduced to a
diagonal form directly. The third row corresponds to the equation
(4/3)x3 = 2/3 which has the solution x3 = 1/2. The second row then
corresponds to the equation (3/2)x2 � (1/2) = 1, where the value of
x3 has been substituted in the parentheses. The solution for x2 is
thus x2 = 1. The first row is then the equation 2x1 � (1) = 0, where
the value of x2 has been substituted in the parentheses, and therefore
x1 = 1/2. The solution is x = (1/2, 1, 1/2). This process of solving the
upper triangular system of equations is called back substitution. Gaus-
sian elimination maybe laborious but is highly amenable to numerical
computation. It occurs in two steps:

1. For the system of equations Ax = b, represented as [A|b], use
elementary row operations, to reduce A to its upper triangular form
U : [A|b] ! [U | ˆb].

2. Use back substitution to solve the upper triangular system of equa-
tions, Ux = ˆ

b.

A more general algorithm is as follows. Begin with the system of
equations, Ax = b, where A 2 CN⇥N and x, b 2 CN . This can be
represented as

2

6

6

6

6

4

A11 A12 . . . A1N b1

1 A22 . . . A2N b2
.. . .. . .. .

7

1 AN2 . . . ANN bN

7

7

7

5

A2
...

AN

3

.

systems of linear equations 25

Assume that the rows are ordered so that A11 6= 0. The first step in
reducing the equation to upper triangular form is to select the pivot, A11,
and compute the set of ratios, lk1 = Ak1/A11 with k = 2, 3, . . . , N. For
each row k > 1, perform the operation: (row)k ! (row)k � lk1(row)1.
The system of equations now has the form:
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and the entire first column has been reduced to a single value.
The same procedure is followed to eliminate values from the second

column. First select the pivot, A22 � l21 A12. For now, assume this pivot
is not zero. Then calculate the ratios: lk2 = Ak2/(A22 � l21 A12) for
k = 3, 4, . . . N. Finally, perform the row operation (row)k ! (row)k �
lk2(row)2 for each row k > 2. This will eliminate the all values below
the second in the second column of the matrix. Repeat this same
procedure until the matrix is reduced to upper triangular form. With
this, simple back substitution produces the desired solution.

In MATLAB the solutions to this system of equations is given by
the command x = A \b. The backslash operator performs Gaussian
elimination. However, this operator has a number of hidden features
that attempt to optimize the solution without user input.

How many operations are required to reduce an N ⇥ N system of
equations to the upper triangular form? For a pivot in row k, there are
N � k elementary row operations to perform. These row operations
require subtraction of a rescaled form of row k from the N � k elements
in each row below k. That is, O(N2) operations are performed for each
pivot. There are at most, N � 1, pivots so that O(N3) arithmetic opera-
tions are needed to reduce the system of equations to upper triangular
form. Back substitution requires just O(N2) operations. Therefore, di-
rect solution of a system of N equations and N unknowns by Gaussian
eliminations requires O(N3) operations. Most of the effort is spent
reducing the system to row-echelon form.

2.3.1 Partial pivoting

What if the pivot selected is zero? The exchange of rows at any point
in the process will not affect the eventual solution of the system of
equations. Thus, when a zero pivot is encountered in row k, perform
the row operation (row)k $ (row)l for some l > k, where the element
in the kth column of row l is non-zero. This will yield a non-zero
pivot with which the process can continue. If there are no non-zero
pivots remaining, then there is not a unique solution to the system
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the command x = A \b. The backslash operator performs Gaussian
elimination. However, this operator has a number of hidden features
that attempt to optimize the solution without user input.
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What if the pivot selected is zero? The exchange of rows at any point
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equations. Thus, when a zero pivot is encountered in row k, perform
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in the kth column of row l is non-zero. This will yield a non-zero
pivot with which the process can continue. If there are no non-zero
pivots remaining, then there is not a unique solution to the system
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the command x = A \b. The backslash operator performs Gaussian
elimination. However, this operator has a number of hidden features
that attempt to optimize the solution without user input.
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in the process will not affect the eventual solution of the system of
equations. Thus, when a zero pivot is encountered in row k, perform
the row operation (row)k $ (row)l for some l > k, where the element
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and the entire first column has been reduced to a single value.
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column. First select the pivot, . For now, assume this pivot
is not zero. Then calculate the ratios: lk2 = Ak2/(A22 � l21 A12) for
k = 3, 4, . . . N. Finally, perform the row operation (row)k ! (row)k �
lk2(row)2 for each row k > 2. This will eliminate the all values below
the second in the second column of the matrix. Repeat this same
procedure until the matrix is reduced to upper triangular form. With
this, simple back substitution produces the desired solution.

In MATLAB the solutions to this system of equations is given by
the command x = A \b. The backslash operator performs Gaussian
elimination. However, this operator has a number of hidden features
that attempt to optimize the solution without user input.
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rect solution of a system of N equations and N unknowns by Gaussian
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reducing the system to row-echelon form.
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equations. Thus, when a zero pivot is encountered in row k, perform
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in the kth column of row l is non-zero. This will yield a non-zero
pivot with which the process can continue. If there are no non-zero
pivots remaining, then there is not a unique solution to the system
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In MATLAB the solutions to this system of equations is given by
the command x = A \b. The backslash operator performs Gaussian
elimination. However, this operator has a number of hidden features
that attempt to optimize the solution without user input.
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rect solution of a system of N equations and N unknowns by Gaussian
eliminations requires O(N3) operations. Most of the effort is spent
reducing the system to row-echelon form.

2.3.1 Partial pivoting

What if the pivot selected is zero? The exchange of rows at any point
in the process will not affect the eventual solution of the system of
equations. Thus, when a zero pivot is encountered in row k, perform
the row operation (row)k $ (row)l for some l > k, where the element
in the kth column of row l is non-zero. This will yield a non-zero
pivot with which the process can continue. If there are no non-zero
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and the entire first column has been reduced to a single value.
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the second in the second column of the matrix. Repeat this same
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the command x = A \b. The backslash operator performs Gaussian
elimination. However, this operator has a number of hidden features
that attempt to optimize the solution without user input.

How many operations are required to reduce an N ⇥ N system of
equations to the upper triangular form? For a pivot in row k, there are
N � k elementary row operations to perform. These row operations
require subtraction of a rescaled form of row k from the N � k elements
in each row below k. That is, O(N2) operations are performed for each
pivot. There are at most, N � 1, pivots so that O(N3) arithmetic opera-
tions are needed to reduce the system of equations to upper triangular
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equations. Thus, when a zero pivot is encountered in row k, perform
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and the entire first column has been reduced to a single value.
The same procedure is followed to eliminate values from the second

column. First select the pivot, A22 � l21 A12. For now, assume this pivot
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equations. Thus, when a zero pivot is encountered in row k, perform
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equations to the upper triangular form? For a pivot in row k, there are
N � k elementary row operations to perform. These row operations
require subtraction of a rescaled form of row k from the N � k elements
in each row below k. That is, O(N2) operations are performed for each
pivot. There are at most, N � 1, pivots so that O(N3) arithmetic opera-
tions are needed to reduce the system of equations to upper triangular
form. Back substitution requires just O(N2) operations. Therefore, di-
rect solution of a system of N equations and N unknowns by Gaussian
eliminations requires O(N3) operations. Most of the effort is spent
reducing the system to row-echelon form.

2.3.1 Partial pivoting

What if the pivot selected is zero? The exchange of rows at any point
in the process will not affect the eventual solution of the system of
equations. Thus, when a zero pivot is encountered in row k, perform
the row operation (row)k $ (row)l for some l > k, where the element
in the kth column of row l is non-zero. This will yield a non-zero
pivot with which the process can continue. If there are no non-zero
pivots remaining, then there is not a unique solution to the system
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• Is Gaussian elimination reliable (stable)?
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• If a selected pivot is zero, perform an additional row 
operation and reselect the pivot.

• Swap the pivot row for a row with a non-zero 
pivot: 

• What if all potential pivots are zero?
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• Example with three digit accuracy:
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• solve by back substitution:
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• repeat after swapping rows 1 and 2…

• Small pivots can lead to large errors. 

• Therefore, many algorithms implement a pivoting 
strategy that uses the largest available pivot to 
minimize numerical errors.
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of equations. This process is called pivoting and is used to allow the
elimination procedure to continue. How is this new pivot to be chosen
for amongst many options, however?

Consider the system of equations with unknown vector x:
"

10�4 1 1
1 �1 0

#

.

Gaussian elimination is executed, but with arithmetic operations re-
stricted to three significant figures of accuracy. The first pivot is 10�4,
so l21 = 104. The row operation (row)2 ! (row)2 � l21(row1) yields

"

10�4 1 1
0 �1.00 ⇥ 104 �1.00 ⇥ 104

#

,

Back substitution gives the solution x1 = 0.00 and x2 = 1.00. However,
the exact solution is x1 = 0.9999, x2 = 0.9999. The small pivot intro-
duced considerable numerical error. Exchanging the rows first and then
performing the elimination procedure again, gives a solution x1 = 1.00
and x2 = 1.00, which is much more accurate.

The precision of arithmetic operations in a computer is akin to the
truncation of insignificant figures. Thus, small pivots are capable of
magnifying small errors. A procedure meant to control numerical error
during Gaussian elimination called partial pivoting involves searching
the same column as the pivot for the largest entry in absolute value and
then exchanging rows. The new pivot will introduce less numerical
error.

The error introduced by small pivots is not related to the condition
number. The matrix in this example has a condition number of 2.6. The
algorithm itself, Gaussian elimination, introduces errors and may not
be stable without a pivoting strategy.

2.3.2 Sparse matrices and fill-in

Consider a system of six equations and six unknowns of the form:
2
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7

5

, (2.33)

where the ⇥ symbols reflect the non-zero entries in the matrix and
inhomogeneity. To store the data reflecting this system of equations
requires only a few vectors: 1 of dimension 6 for the righthand side, 1

of dimension 6 for the diagonal of the matrix and 2 of dimension 5 for
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• Example: Gaussian elimination of a sparse             system

• What is the most memory I would need to perform 
Gaussian elimination?

• What is the least amount of memory I would need 
to perform Gaussian elimination?

• How should I store the matrix?
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the same column as the pivot for the largest entry in absolute value and
then exchanging rows. The new pivot will introduce less numerical
error.

The error introduced by small pivots is not related to the condition
number. The matrix in this example has a condition number of 2.6. The
algorithm itself, Gaussian elimination, introduces errors and may not
be stable without a pivoting strategy.

2.3.2 Sparse matrices and fill-in

Consider a system of six equations and six unknowns of the form:
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⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
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5

, (2.33)

where the ⇥ symbols reflect the non-zero entries in the matrix and
inhomogeneity. To store the data reflecting this system of equations
requires only a few vectors: 1 of dimension 6 for the righthand side, 1

of dimension 6 for the diagonal of the matrix and 2 of dimension 5 for
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of equations. This process is called pivoting and is used to allow the
elimination procedure to continue. How is this new pivot to be chosen
for amongst many options, however?

Consider the system of equations with unknown vector x:
"

10�4 1 1
1 �1 0

#

.

Gaussian elimination is executed, but with arithmetic operations re-
stricted to three significant figures of accuracy. The first pivot is 10�4,
so l21 = 104. The row operation (row)2 ! (row)2 � l21(row1) yields

"

10�4 1 1
0 �1.00 ⇥ 104 �1.00 ⇥ 104

#

,

Back substitution gives the solution x1 = 0.00 and x2 = 1.00. However,
the exact solution is x1 = 0.9999, x2 = 0.9999. The small pivot intro-
duced considerable numerical error. Exchanging the rows first and then
performing the elimination procedure again, gives a solution x1 = 1.00
and x2 = 1.00, which is much more accurate.

The precision of arithmetic operations in a computer is akin to the
truncation of insignificant figures. Thus, small pivots are capable of
magnifying small errors. A procedure meant to control numerical error
during Gaussian elimination called partial pivoting involves searching
the same column as the pivot for the largest entry in absolute value and
then exchanging rows. The new pivot will introduce less numerical
error.

The error introduced by small pivots is not related to the condition
number. The matrix in this example has a condition number of 2.6. The
algorithm itself, Gaussian elimination, introduces errors and may not
be stable without a pivoting strategy.

2.3.2 Sparse matrices and fill-in

Consider a system of six equations and six unknowns of the form:
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where the ⇥ symbols reflect the non-zero entries in the matrix and
inhomogeneity. To store the data reflecting this system of equations
requires only a few vectors: 1 of dimension 6 for the righthand side, 1

of dimension 6 for the diagonal of the matrix and 2 of dimension 5 for
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second derivatives in x1 and x2, was composed of five nodes and thus
A possesses five bands:

A =

1
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C
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C

C
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B
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B
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@

.

In a given row, the space between the three central bands in A and
the fringe bands contains N � 1 zeros. The total bandwidth of A is
2(N + 1), and the number of non-zero elements is O(5N2) when N is
large.

As shown in chapter 2, the worst case scenario for Gaussian elimi-
nation on a sparse matrix is a doubling of the bandwidth. Thus, the
upper triangular factor of A could be a matrix with a dense band
above the diagonal having bandwidth 2(N + 1). Such a band would
contain O(N3) non-zero entries when N is large. In the above example,
the number of non-zero entries in the upper triangular factor of A is
(101, 831, 119171, 975846), for N = (5, 10, 50, 100) – consistent with the
N3 scaling prediction. Because direct solution of the equation A · z = b

can consume a tremendous amount of memory, iterative methods are
often used instead.

Neumann boundary conditions

In finite difference methods, Dirichlet boundary conditions are
straightforward to implement. In the case of the steady diffusion
equation, the concentration of solute is prescribed at nodes on the
boundary of the domain. Neumann boundary conditions present a
challenge, however. For the steady diffusion equation, the concentration
of solute on the boundary of the domain is unknown. Instead, for
instance, n · rc = 0. This condition cannot be prescribed exactly. It is
subject to a finite difference approximation of the normal derivative.
Unlike with Dirichlet boundary conditions, the finite difference method
cannot satisfy Neumann boundary conditions exactly.

One method of implementing Neumann boundary conditions is
through the use of ghost nodes. Suppose finite differences are used
to solve the steady diffusion equation on an L ⇥ L square domain
with (N + 1) ⇥ (N + 1) nodes equally spaced throughout: h = L/N.
Let the solution to the steady diffusion equation satisfy the boundary
conditions:

c(0, x2) = x2(L � x2),

c(x1, 0) = x1(L � x1),



Sparse Matrices
• Example: a finite volume model of diffusion

• How many operations to compute        when      is

• How much memory to store       as a full matrix?

• How much memory to store        as a sparse matrix?
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A =

1

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

@

.

In a given row, the space between the three central bands in A and
the fringe bands contains N � 1 zeros. The total bandwidth of A is
2(N + 1), and the number of non-zero elements is O(5N2) when N is
large.

As shown in chapter 2, the worst case scenario for Gaussian elimi-
nation on a sparse matrix is a doubling of the bandwidth. Thus, the
upper triangular factor of A could be a matrix with a dense band
above the diagonal having bandwidth 2(N + 1). Such a band would
contain O(N3) non-zero entries when N is large. In the above example,
the number of non-zero entries in the upper triangular factor of A is
(101, 831, 119171, 975846), for N = (5, 10, 50, 100) – consistent with the
N3 scaling prediction. Because direct solution of the equation A · z = b

can consume a tremendous amount of memory, iterative methods are
often used instead.

Neumann boundary conditions

In finite difference methods, Dirichlet boundary conditions are
straightforward to implement. In the case of the steady diffusion
equation, the concentration of solute is prescribed at nodes on the
boundary of the domain. Neumann boundary conditions present a
challenge, however. For the steady diffusion equation, the concentration
of solute on the boundary of the domain is unknown. Instead, for
instance, n · rc = 0. This condition cannot be prescribed exactly. It is
subject to a finite difference approximation of the normal derivative.
Unlike with Dirichlet boundary conditions, the finite difference method
cannot satisfy Neumann boundary conditions exactly.

One method of implementing Neumann boundary conditions is
through the use of ghost nodes. Suppose finite differences are used
to solve the steady diffusion equation on an L ⇥ L square domain
with (N + 1) ⇥ (N + 1) nodes equally spaced throughout: h = L/N.
Let the solution to the steady diffusion equation satisfy the boundary
conditions:

c(0, x2) = x2(L � x2),

c(x1, 0) = x1(L � x1),
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Sparse Matrices
• Example: Gaussian elimination of a structured matrix

• Before elimination:

• First column eliminated:

• After elimination:
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of equations. This process is called pivoting and is used to allow the
elimination procedure to continue. How is this new pivot to be chosen
for amongst many options, however?

Consider the system of equations with unknown vector x:
"

10�4 1 1
1 �1 0

#

.

Gaussian elimination is executed, but with arithmetic operations re-
stricted to three significant figures of accuracy. The first pivot is 10�4,
so l21 = 104. The row operation (row)2 ! (row)2 � l21(row1) yields

"

10�4 1 1
0 �1.00 ⇥ 104 �1.00 ⇥ 104

#

,

Back substitution gives the solution x1 = 0.00 and x2 = 1.00. However,
the exact solution is x1 = 0.9999, x2 = 0.9999. The small pivot intro-
duced considerable numerical error. Exchanging the rows first and then
performing the elimination procedure again, gives a solution x1 = 1.00
and x2 = 1.00, which is much more accurate.

The precision of arithmetic operations in a computer is akin to the
truncation of insignificant figures. Thus, small pivots are capable of
magnifying small errors. A procedure meant to control numerical error
during Gaussian elimination called partial pivoting involves searching
the same column as the pivot for the largest entry in absolute value and
then exchanging rows. The new pivot will introduce less numerical
error.

The error introduced by small pivots is not related to the condition
number. The matrix in this example has a condition number of 2.6. The
algorithm itself, Gaussian elimination, introduces errors and may not
be stable without a pivoting strategy.

2.3.2 Sparse matrices and fill-in

Consider a system of six equations and six unknowns of the form:
2

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥

3

7

7

7

7

7

7

7

7

5

, (2.33)

where the ⇥ symbols reflect the non-zero entries in the matrix and
inhomogeneity. To store the data reflecting this system of equations
requires only a few vectors: 1 of dimension 6 for the righthand side, 1

of dimension 6 for the diagonal of the matrix and 2 of dimension 5 for
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the off-diagonal pieces. The matrix is said to be sparse. Sparsity can
be a huge advantage computationally since only the non-zero entries
require storage. Many problems of physical interest can be reduced
to linear equations with sparse structure, so understanding how to
take advantage of that structure is crucial. Importantly, operations
performed on sparse matrices do not necessarily have sparse results. So
one needs to be thoughtful about how calculations with sparse matrices
are handled.

Perform Gaussian elimination on the system of equations (2.33).
After the first set of elementary row operations, intended to eliminate
the first column of the matrix, the system of equations has the form:

2

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥

3

7

7

7

7

7

7

7

7

5

.

Even after completing the set of operations leading to the desired upper-
triangular form, all the non-zero entries to the right of the diagonal in
rows 2-6 are filled-in:

2

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥

3

7

7

7

7

7

7

7

7

5

.

For a small system such as this, fill-in is inconsequential. However,
for a large system – millions of equations and unknowns – this can
make numerical solution impossible. A computer may not have enough
memory to store all the entries.

There are ways to avoid or at least minimize fill-in, however. Take
the original system of equations and exchange the first and last rows.
Then exchange the first and last columns. The resulting system of
equations has the form:

2

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

3

7

7

7

7

7

7

7

7

5

.

Gaussian elimination requires only elementary row operations to be
performed on row 6, with the pivots given by the diagonals of the
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the off-diagonal pieces. The matrix is said to be sparse. Sparsity can
be a huge advantage computationally since only the non-zero entries
require storage. Many problems of physical interest can be reduced
to linear equations with sparse structure, so understanding how to
take advantage of that structure is crucial. Importantly, operations
performed on sparse matrices do not necessarily have sparse results. So
one needs to be thoughtful about how calculations with sparse matrices
are handled.
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After the first set of elementary row operations, intended to eliminate
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Even after completing the set of operations leading to the desired upper-
triangular form, all the non-zero entries to the right of the diagonal in
rows 2-6 are filled-in:
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For a small system such as this, fill-in is inconsequential. However,
for a large system – millions of equations and unknowns – this can
make numerical solution impossible. A computer may not have enough
memory to store all the entries.

There are ways to avoid or at least minimize fill-in, however. Take
the original system of equations and exchange the first and last rows.
Then exchange the first and last columns. The resulting system of
equations has the form:
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Gaussian elimination requires only elementary row operations to be
performed on row 6, with the pivots given by the diagonals of the



Sparse Matrices
• Example: Gaussian elimination of a structured matrix

• Before elimination:

• Swap last and first rows and columns:

• After elimination:
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the off-diagonal pieces. The matrix is said to be sparse. Sparsity can
be a huge advantage computationally since only the non-zero entries
require storage. Many problems of physical interest can be reduced
to linear equations with sparse structure, so understanding how to
take advantage of that structure is crucial. Importantly, operations
performed on sparse matrices do not necessarily have sparse results. So
one needs to be thoughtful about how calculations with sparse matrices
are handled.

Perform Gaussian elimination on the system of equations (2.33).
After the first set of elementary row operations, intended to eliminate
the first column of the matrix, the system of equations has the form:

2

6

6

6

6

6

6

6

6

4

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥ ⇥ ⇥

3

7

7

7

7

7

7

7

7

5

.

Even after completing the set of operations leading to the desired upper-
triangular form, all the non-zero entries to the right of the diagonal in
rows 2-6 are filled-in:
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For a small system such as this, fill-in is inconsequential. However,
for a large system – millions of equations and unknowns – this can
make numerical solution impossible. A computer may not have enough
memory to store all the entries.

There are ways to avoid or at least minimize fill-in, however. Take
the original system of equations and exchange the first and last rows.
Then exchange the first and last columns. The resulting system of
equations has the form:
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Gaussian elimination requires only elementary row operations to be
performed on row 6, with the pivots given by the diagonals of the
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of equations. This process is called pivoting and is used to allow the
elimination procedure to continue. How is this new pivot to be chosen
for amongst many options, however?

Consider the system of equations with unknown vector x:
"

10�4 1 1
1 �1 0

#

.

Gaussian elimination is executed, but with arithmetic operations re-
stricted to three significant figures of accuracy. The first pivot is 10�4,
so l21 = 104. The row operation (row)2 ! (row)2 � l21(row1) yields

"

10�4 1 1
0 �1.00 ⇥ 104 �1.00 ⇥ 104

#

,

Back substitution gives the solution x1 = 0.00 and x2 = 1.00. However,
the exact solution is x1 = 0.9999, x2 = 0.9999. The small pivot intro-
duced considerable numerical error. Exchanging the rows first and then
performing the elimination procedure again, gives a solution x1 = 1.00
and x2 = 1.00, which is much more accurate.

The precision of arithmetic operations in a computer is akin to the
truncation of insignificant figures. Thus, small pivots are capable of
magnifying small errors. A procedure meant to control numerical error
during Gaussian elimination called partial pivoting involves searching
the same column as the pivot for the largest entry in absolute value and
then exchanging rows. The new pivot will introduce less numerical
error.

The error introduced by small pivots is not related to the condition
number. The matrix in this example has a condition number of 2.6. The
algorithm itself, Gaussian elimination, introduces errors and may not
be stable without a pivoting strategy.

2.3.2 Sparse matrices and fill-in

Consider a system of six equations and six unknowns of the form:
2

6
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6

6

6

4

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥
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⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥

3

7

7

7
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7

7

7

7

5

, (2.33)

where the ⇥ symbols reflect the non-zero entries in the matrix and
inhomogeneity. To store the data reflecting this system of equations
requires only a few vectors: 1 of dimension 6 for the righthand side, 1

of dimension 6 for the diagonal of the matrix and 2 of dimension 5 for



Fill-in

• Gaussian elimination fills in sparse matrices

• The amount of fill-in depends on the sparse structure.

• In general, lower bandwidth sparsity patterns, have 
smaller amounts of fill-in.

• Bandwidth:

• In the worst case, GE doubles the bandwidth

• There are algorithms that reorder matrices with the 
goal of minimizing the amount of fill-in.
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second derivatives in x1 and x2, was composed of five nodes and thus
A possesses five bands:
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In a given row, the space between the three central bands in A and
the fringe bands contains N � 1 zeros. The total bandwidth of A is
2(N + 1), and the number of non-zero elements is O(5N2) when N is
large.

As shown in chapter 2, the worst case scenario for Gaussian elimi-
nation on a sparse matrix is a doubling of the bandwidth. Thus, the
upper triangular factor of A could be a matrix with a dense band
above the diagonal having bandwidth 2(N + 1). Such a band would
contain O(N3) non-zero entries when N is large. In the above example,
the number of non-zero entries in the upper triangular factor of A is
(101, 831, 119171, 975846), for N = (5, 10, 50, 100) – consistent with the
N3 scaling prediction. Because direct solution of the equation A · z = b

can consume a tremendous amount of memory, iterative methods are
often used instead.

Neumann boundary conditions

In finite difference methods, Dirichlet boundary conditions are
straightforward to implement. In the case of the steady diffusion
equation, the concentration of solute is prescribed at nodes on the
boundary of the domain. Neumann boundary conditions present a
challenge, however. For the steady diffusion equation, the concentration
of solute on the boundary of the domain is unknown. Instead, for
instance, n · rc = 0. This condition cannot be prescribed exactly. It is
subject to a finite difference approximation of the normal derivative.
Unlike with Dirichlet boundary conditions, the finite difference method
cannot satisfy Neumann boundary conditions exactly.

One method of implementing Neumann boundary conditions is
through the use of ghost nodes. Suppose finite differences are used
to solve the steady diffusion equation on an L ⇥ L square domain
with (N + 1) ⇥ (N + 1) nodes equally spaced throughout: h = L/N.
Let the solution to the steady diffusion equation satisfy the boundary
conditions:

c(0, x2) = x2(L � x2),

c(x1, 0) = x1(L � x1),

k1

k2



Fill-in
• Fill-in is reduced by reordering:
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Figure 2.6: The non-zero entires in the
42 ⇥ 42 sparse matrix, fidapm05, from
Matrix Market are depicted. Below that,
the non-zero entries in the upper trian-
gular portion resulting from Gaussian
elimination are shown for cases in which
no reordering is performed, the Reverse
Cuthill-McKee reordering is performed
and the Approximate Minimum Degree
reordering is performed. The latter re-
sults in the least fill-in.

If P is the identity matrix, P = I , then PA

C
i = A

C
i . That is, the columns

of A are left unchanged by P . Suppose instead that P has the form

P =

0

B

B

B

B

B

B

@

0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

1

C

C

C

C

C

C

A

.

It is identical to the identity matrix with the exception of swapping
rows 1 and 2. What is PA? Multiplying any column of A by P will
replicate the column, but with rows 1 and 2 swapped. As this swap is
the same for each of the columns,

PA =

0

B

B

B

B

B

B

@

A

R
2

A

R
1

A

R
3

...
A

R
N

1

C

C

C

C

C

C

A

.

The product PA swaps the rows of A.
The matrix P , which is filled with zeros except for a single entry

of unity in each row and column, is called a permutation matrix.
Multiplication from the left has the effect of swapping the rows. For
example, the elementary row operation on a matrix A: (row)i $ (row)j,



Permutation
• Reordering through use of permutation matrices:

• Consider the operation of swapping two rows.  This 
can be done through matrix multiplication.

• For example:
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Figure 2.6: The non-zero entires in the
42 ⇥ 42 sparse matrix, fidapm05, from
Matrix Market are depicted. Below that,
the non-zero entries in the upper trian-
gular portion resulting from Gaussian
elimination are shown for cases in which
no reordering is performed, the Reverse
Cuthill-McKee reordering is performed
and the Approximate Minimum Degree
reordering is performed. The latter re-
sults in the least fill-in.
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The product PA swaps the rows of A.
The matrix P , which is filled with zeros except for a single entry

of unity in each row and column, is called a permutation matrix.
Multiplication from the left has the effect of swapping the rows. For
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• Consider the operation of swapping two rows.  This 
can be done through matrix multiplication.
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The product PA swaps the rows of A.
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of unity in each row and column, is called a permutation matrix.
Multiplication from the left has the effect of swapping the rows. For
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matrix. No fill-in occurs. In fact, when the system of equations is ready
for back substitution, it is even more sparse:
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The bandwidth of a square matrix, A 2 CN⇥N can be defined as
follows. The integers k1 and k2, termed the left and right bandwidth
respectively, are the minimum values for which Aij = 0 over all i 2
[1, N] and j < i � k1 and j > i + k2. The bandwidth of the matrix is
k1 + k2 + 1. For example, a diagonal matrix has k1 = k2 = 0 and thus
a bandwidth of 1. A tridiagonal matrix has k1 = k2 = 1 and thus a
bandwidth of 3.

Without pivoting, Gaussian elimination does not fill-in band matri-
ces. Thus, in upper triangular form, the matrix will have bandwidth
1 + k2. With partial pivoting, there will be fill-in and the upper triangu-
lar form of the system of equations will have a worse case bandwidth
of 1 + k1 + k2. This is the same as the original matrix! Recognizing
the banded structure of matrices, which often results when solving
physical problems, and then capitalizing upon that structure is key to
efficient problem solving.

The example given by equation 2.33 is a bit pathological in that a
simple swap of rows and columns was all that was needed to reduce
the fill-in to zero. In general it is not that simple. However many
routines exist to reduce the bandwidth of a matrix or otherwise reorder
it so that fill-in due to Gaussian elimination is minimal. These include
the Reverse Cuthill-McKee reordering (symrcm in MATLAB) and the
Approximate Minimum Degree reordering (symamd in MATLAB). In
figure 2.6, a sample sparse matrix and the upper triangular matrices
resulting from Gaussian elimination before and after reordering are
depicted. Note, the non-zero entries of a matrix A may be displayed in
MATLAB using the command, spy(A).

2.3.3 Reordering and complete pivoting

For the matrices A,P 2 CN⇥N , recall the definition of matrix multipli-
cation:

PA =
⇣

PA

C
1 PA

C
2 . . . PA

C
N

⌘

.
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It is identical to the identity matrix with the exception of swapping
rows 1 and 2. What is PA? Multiplying any column of A by P will
replicate the column, but with rows 1 and 2 swapped. As this swap is
the same for each of the columns,
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The product PA swaps the rows of A.
The matrix P , which is filled with zeros except for a single entry

of unity in each row and column, is called a permutation matrix.
Multiplication from the left has the effect of swapping the rows. For
example, the elementary row operation on a matrix A: (row)i $ (row)j,

swap row 1 and 2

identity

Permutation



• Reordering through use of permutation matrices:

• How do I swap columns?

• Permutation matrices are unitary:

• Reordering a system of equations:

• Reordering is a form of preconditioning!

• Reordering can be used for pivoting!
26

PPT = I

PT = P�1
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can be represented as PA. The permutation matrix in this case, P , has
ones on its diagonal except in rows i and j. Instead, Pij = Pji = 1. For
an arbitrary permutation matrix, P , if an element equals 1 at row i and
column j, then the product PA will have A

R
j in row i.

A similar reordering of columns instead of rows occurs when multi-
plying from the right by P

T . This can be seen by utilizing the identity
for transposition of matrix products:

AP

T =
⇣

PA

T
⌘T

.

Obviously, the product PA

T reorders the rows of AT . However, the
rows of A

T are just the columns of A, and therefore multiplication
from the right by P

T performs a column reordering.
Permutation matrices are termed unitary because their rows and

columns are mutually orthogonal: PP

† = I . The conjugate transpose
of a unitary matrix is its inverse: P�1 = P

†. A system of N equations
and N unknowns, Ax = b, can have rows and columns reordered by
using two permutation matrices P 1 and P 2:

(P 1AP

T
2 )(P 2x) = P 1b.

This system of equations can be rewritten as ˆ

Ax̂ = ˆ

b, where ˆ

A =
P 1AP

T
2 , x̂ = P 2x and ˆ

b = P 1b are reordered forms of A, x and b,
respectively.

Such a reordered system of equations may confer numerical advan-
tages. For instance, when performing partial pivoting during Gaussian
elimination, one searches just the current column for the largest pivot
and performs a row swapping operation. Instead, a process called
complete pivoting allows one to swap both rows and columns to find
the largest entry remaining in the matrix. This becomes the pivot and
the column swapping operations are recorded in a matrix P 2. With
the reordered system of equations solved, x can be determined from
the identity: x = P

T
2 x̂. This complete pivoting is utilized by MATLAB

when a system of equations is solved using the backslash operator.

2.3.4 LU decomposition

Recall that the elementary row operations on the system of equations
Ax = b with A 2 CN⇥N and x, b 2 CN results in an upper triangular
system of equations:

Ux = ˆ

b. (2.34)

Assume a unique solution exists and neglect any pivoting. What is ˆ

b?
The elementary row operations were a sequence of linear transforma-
tions of b yielding ˆ

b, thus:

ˆ

b = L

�1
b, (2.35)

Permutation



• Reordering through use of permutation matrices:

• Permutation matrices are sparse too.  How are they 
stored?

• Example reversing the order of 10 rows:

• Permutation matrices are sparse too.  How are they 
used?

• P = [ 10 9 8 7 6 5 4 3 2 1 ]

• A = A( P, : )

28
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• Reordering through use of permutation matrices:

• Example:

• P = symrcm(A);

• figure; spy(A); 

• figure; spy( A( P, P ) ) 

29

Permutation



MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms



