10.34: Numerical Methods Applied to Chemical Engineering

Lecture 4: Gaussian elimination Sparse matrices

Recap

- Vector spaces
- Linear dependence
- Existence and uniqueness of solutions
- Four fundamental subspaces

Recap

- What is the column space of a matrix?
- What is the null space of a matrix?
- What are the conditions for existence and uniqueness of solutions to linear equations?

Easy to Solve Linear Equations

- Diagonal:
 - Go row by row

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)$$

- Triangular:
 - Back substitution

$$\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$$

• Goal: transform complicated equations into easy ones

- Solving N equations with N unknowns:
 - Example: $\begin{array}{cccc} 2x_1 & -x_2 & 0 & = & 0 \\ -x_1 & +2x_2 & -x_3 & = & 1 \end{array}$

$$0 \quad -x_2 \quad +2x_3 = 0$$

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 1 \\ 0 & -1 & 2 & 0 \end{bmatrix}$$

- Convert to triangular form using elementary row operations
 - $(row)_1 \rightarrow c(row)_1$
 - $(row)_1 \rightarrow a(row)_1 + b(row)_2$
 - $\bullet \ (row)_1 \leftrightarrow (row)_2$

• Solving N equations with N unknowns:

• Example:
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 1 \\ 0 & -1 & 2 & 0 \end{bmatrix}$$

• step 1: $(row)_2 \rightarrow (row)_2 + (1/2)(row)_1$

2	-1	0	0	
0	$-1 \\ 3/2 \\ -1$	-1	1	
0	-1	2	0	

• step 2: $(row)_3 \rightarrow (row)_3 + (2/3)(row)_2$

2	-1	0	0
0	3/2	-1	1
0	0	4/3	2/3

• solve by back substitution.

- Solving N equations with N unknowns:
 - Example: $\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1N} & b_1 \\ A_{21} & A_{22} & \dots & A_{2N} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \\ A_{N1} & A_{N2} & \dots & A_{NN} & b_N \end{bmatrix}$
 - step I, select pivot: A_{11} $\lambda_{k1} = A_{k1}/A_{11}$
 - step 2, do row operations: $(row)_k \rightarrow (row)_k \lambda_{k1}(row)_1$ k > 1

- step 3, select pivot: $A_{22} \lambda_{21}A_{12}$ $\lambda_{k2} = A_{k2}/(A_{22} \lambda_{21}A_{12})$
- step 4, do row operations: $(row)_k \rightarrow (row)_k \lambda_{k2}(row)_2$ k > 2
- rinse and repeat until upper triangular
- solve by back substitution

- Gaussian elimination requires how many operations?
- Is Gaussian elimination reliable (stable)?

Example:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- Partial pivoting:
 - If a selected pivot is zero, perform an additional row operation and reselect the pivot.
 - Swap the pivot row for a row with a non-zero pivot: $(row)_k \leftrightarrow (row)_l$
 - What if all potential pivots are zero?

- Gaussian elimination requires how many operations?
- Is Gaussian elimination reliable (stable)?

Example:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- Partial pivoting:
 - If a selected pivot is zero, perform an additional row operation and reselect the pivot.
 - Swap the pivot row for a row with a non-zero pivot: $(row)_k \leftrightarrow (row)_l$
 - What if all potential pivots are zero?

- Pivoting to improve accuracy:
 - Example with three digit accuracy: $\begin{vmatrix} 10^{-4} & 1 & | 1 \\ 1 & -1 & 0 \end{vmatrix}$

eliminate first column:

$$\begin{bmatrix} 10^{-4} & 1 & | & 1 \\ 0 & -1.00 \times 10^4 & | & -1.00 \times 10^4 \end{bmatrix}$$

- solve by back substitution: $x_1 = 0.00$ $x_2 = 1.00$
- exact solution is: $x_1 = 0.9999$ $x_2 = 0.9999$
- repeat after swapping rows I and 2...
- Small pivots can lead to large errors.
 - Therefore, many algorithms implement a pivoting strategy that uses the largest available pivot to minimize numerical errors.

• Example: Gaussian elimination of a sparse N imes N system

- What is the most memory I would need to perform Gaussian elimination?
- What is the least amount of memory I would need to perform Gaussian elimination?
- How should I store the matrix?

• Example: a finite volume model of diffusion

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

• Example: a finite volume model of diffusion

conserve the flux from one cell to the next

only neighboring cells interact

$$\mathbf{c}_{i+1} = \mathbf{c}_i + \frac{\Delta t D}{\Delta x^2} \mathbf{A} \mathbf{c}_i$$

• Example: a finite volume model of diffusion

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

conserve the flux from one cell to the next

only neighboring cells interact

 $c_{i+1}^{j+Nk} = c_{i+1}^{j+Nk} + \frac{\Delta tD}{\Delta x^2} \left(c_i^{j+1+Nk} + c_i^{j-1+Nk} + c_i^{j+N(k+1)} + c_i^{j+N(k-1)} - 4c_i^{j+Nk} \right)$

• Example: a finite volume model of diffusion $\frac{\partial c}{\partial t} = D \nabla^2 c$

$$c_{i+1}^{j+Nk} = c_{i+1}^{j+Nk} + \frac{\Delta tD}{\Delta x^2} \left(c_i^{j+1+Nk} + c_i^{j-1+Nk} + c_i^{j+N(k+1)} + c_i^{j+N(k-1)} - 4c_i^{j+Nk} \right)$$

• Example: a finite volume model of diffusion

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

$$\mathbf{c}_{i+1} = \mathbf{c}_i + \frac{\Delta t D}{\Delta x^2} \mathbf{A} \mathbf{c}_i$$

$$c_{i+1}^{j+Nk} = c_{i+1}^{j+Nk} + \frac{\Delta tD}{\Delta x^2} \left(c_i^{j+1+Nk} + c_i^{j-1+Nk} + c_i^{j+N(k+1)} + c_i^{j+N(k-1)} - 4c_i^{j+Nk} \right)$$

• Example: a finite volume model of diffusion

- How many operations to compute $\mathbf{A}\mathbf{c}_i$ when \mathbf{A} is $N^2 imes N^2$
- How much memory to store $\, {f A} \,$ as a full matrix?
- How much memory to store A as a sparse matrix?

• Example: Gaussian elimination of a structured matrix

• Before elimination: $\begin{bmatrix} \times & \times & \times & \times & \times & | \times \\ & & \times & & & & | \times \\ & & & \times & & & & | \times \\ & & & & \times & & & | \times \\ & & & & & \times & & | \times \\ & & & & & & \times & & | \times \end{bmatrix}$

- Example: Gaussian elimination of a structured matrix

Swap last and first rows and columns: $\Gamma \times$

After elimination:

Fill-in

- Gaussian elimination fills in sparse matrices
 - The amount of fill-in depends on the sparse structure.
 - In general, lower bandwidth sparsity patterns, have smaller amounts of fill-in.
 - Bandwidth:

- In the worst case, GE doubles the bandwidth
- There are algorithms that reorder matrices with the goal of minimizing the amount of fill-in.

Fill-in

• Fill-in is reduced by reordering:

- Reordering through use of permutation matrices:
 - Consider the operation of swapping two rows. This can be done through matrix multiplication.

$$P = \begin{pmatrix} 0 & 1 \leftarrow 0 & \dots & 0 \\ 1 \leftarrow 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \text{ identity}$$

• For example:

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} x_2 \\ x_1 \\ x_3 \end{array}\right)$$

490 non-zero

O

479 non-zero

- Reordering through use of permutation matrices:
 - Consider the operation of swapping two rows. This can be done through matrix multiplication.

$$P = \begin{pmatrix} 0 & 1 \leftarrow 0 & \dots & 0 \\ 1 \leftarrow 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \text{ identity}$$

$$\boldsymbol{P}\boldsymbol{A} = \begin{pmatrix} \boldsymbol{P}\boldsymbol{A}_{1}^{C} & \boldsymbol{P}\boldsymbol{A}_{2}^{C} & \dots & \boldsymbol{P}\boldsymbol{A}_{N}^{C} \end{pmatrix} = \begin{pmatrix} \boldsymbol{A}_{2}^{R} \\ \boldsymbol{A}_{1}^{R} \\ \boldsymbol{A}_{3}^{R} \\ \vdots \\ \boldsymbol{A}_{N}^{R} \end{pmatrix}$$

Permutation

- Reordering through use of permutation matrices:
 - How do I swap columns?

• Permutation matrices are unitary:

$$\mathbf{P}\mathbf{P}^T = \mathbf{I}$$
$$\mathbf{P}^T = \mathbf{P}^{-1}$$

• Reordering a system of equations:

$$(P_1 A P_2^T)(P_2 x) = P_1 b$$

- Reordering is a form of preconditioning!
- Reordering can be used for pivoting!

Permutation

- Reordering through use of permutation matrices:
 - Permutation matrices are sparse too. How are they stored?
 - Example reversing the order of 10 rows:

old position	I	2	3	4	5	6	7	8	9	10
new position	10	9	8	7	6	5	4	3	2	Ι

- Permutation matrices are sparse too. How are they used?
 - P = [10 9 8 7 6 5 4 3 2 1]

•
$$A = A(P, :)$$

Permutation

- Reordering through use of permutation matrices:
 - Example:
 - P = symrcm(A);
 - figure; spy(A);
 - figure; spy(A(P, P))

10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.