
10.34 Numerical Methods Applied to Chemical Engineering 

Quiz 2

• This quiz consists of three problems worth 35, 35, and 30 points respectively.

• There are 4 pages in this quiz (including this cover page). Before you begin, please make sure
that you have all 4 pages.

• You have 2 hours to complete this quiz.

• You are free to use a calculator or any notes you brought with you.

• The points associated with each part of each problem are included in the problem statement.
Please prioritize your time appropriately.
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Problem 1. (35 points)

Consider two continuously stirred tank reactors (CSTRs) in series as shown in the figure below.

When C2(t) is controlled to be some known forcing function g(t) and the reaction kinetics are first
order, the dynamics of the system are modeled by

dC1(t) C0(t)
=

− C1(t)

dt τ
− k1C1(t) (1)

dC2(t)

dt
=
C1(t)− C2(t)

)
τ

− k2C2(t (2)

C2(t) = g(t) (3)

where τ denotes the residence time (equal for both reactors), k1 and k2 are first-order rate constants,
and the states to be simulated are C0, C1, and C2.

1. (12 points) Derive the index of the DAE system (1)–(3), assuming that g(t) is known and
infinitely differentiable.

Solution: The first step is to identify the differential and algebraic variables in the system.
The differential variables are C1(t) and C2(t), the algebraic variable is C0(t), and the param-
eters are τ , k1, and k2. To derive the index, we must take derivatives of (1)–(3) until we
have a complete set of first-order ODEs for all states. Start with taking a derivative of the
algebraic equation,

Ċ2(t) = ġ(t). (3′)

Substitute (3′) into (2),

1
ġ(t) =

(
C1(t)− C2(t)

)
− k2C2(t). (4′)

τ

Take a derivative of (4′),

1
g̈(t) =

(
Ċ1(t)− Ċ2(t)

)
− ˙k2C2(t). (4′′)

τ

Substitute (1) into (4′′),

1
g̈(t) =

τ

[
1(
C0(t)− ˙C1(t)

)
− ˙k1C1(t)− C2(t)

τ

]
− k2C2(t). (5′′)
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Rearrange this for C0(t)

2
( )

˙C0(t) = g̈(t)τ + 1 + k1τ C1(t) + τ + k2τ
2 C2(t) (5′′)

Substitute (3′) into this expression and take another der

(
ivative,

)
...˙ ˙C0(t) = g (t)τ2 +

(
1 + k1τ

)
C1(t) + τ + k 2

2τ g̈(t) (5′′′)

We now have a complete set of first-order ODEs given by

(
(1), (2),

)
and (5′′′). It took us three

derivatives of the orginal ODEs to derive a complete set of ODEs such that the index is
three.

Deduct 2 points for not specifying complete ODE set.

Deduct at most 10 points for incorrect index depending on exact error.

2. (10 points) Determine a consistent initialization for the original variables in the system. If
there are additional degrees of freedom, state the initial conditions that can be specified.

Solution: For a consistent initialization, we must specify the original variables in the DAE.
We also know that the original equations (1)–(3) must be satisfied at the initial time such
that the maximum number of degrees of freedom (DOFs) is given by

˙ ˙5 variables {C0(t0), C1(t0), C1(t0), C2(t0), C2(t0)}
−3 equations {(1), (2), and (3)}

2 maximum # of DOFs

However, as derived in part 1, we have an index three problem with implicit constraints that
should also be satisfied during initialization. Implicit constraints constrain the values of the
original variables in the system. Looking back through part 1, we notice that (3′) and (4′′)

˙ ˙constrain the values of C1(t) and C2(t), which appear in (1)–(3). Therefore, (3′) and (4′′)
represent implicit constraints for this system.

These two additional implicit constraints reduce the degrees of freedom by two. As a result,
we expect the system to be completely specified by the forcing function g(t) (i.e., zero DOFs
due to implicit constraints). A consistent initialization must satisfy

1
Ċ1(t0) =

τ

(
C0(t0)− C1(t0)

)
− k1C1(t0) (4)

Ċ2(t0) =
1
C1(t0)− C2(t0)

τ
− k2C2(t0) (5)

C2(t0) = g(

(
t

)
0) (6)

Ċ2(t0) = ġ(t0) (7)

1
g̈(t0) = ˙)

τ

(
Ċ1(t0)− Ċ2(t0

)
− k2C2(t0) (8)

˙[We can determine C2(t0) and C2(t0) from (6) and (7) directly, respectively. We can solve
˙for C1(t0) and C1(t0) by substituting these into (5) and (8), respectively. Lastly, we can use

these results to solve for C0(t0) using (4).]

Deduct 5 points for missing implicit constraint (4′′).
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Deduct at most 3 points for not specifying the variables you need to solve for
and what equations they should be determined from.

Deduct at most 2 points for missing the other implicit constraint (3′) and math
errors.

3. (6 points) Given g(t) = t2, explicitly compute a consistent initialization at t0 = 0 in terms of
any specified variables from part 2 and the parameters τ , k1, and k2.

Solution: Based on our result from part 2, we know that our initialization is specified entirely
by the forcing function g(t0) i.e., there are no additional variables that need to be specified.
Let us first derive explicit equations for the consistent initialization entirely in terms of g(t0),

C2(t0) = g(t0)

Ċ2(t0) = ġ(t0)

C1(t0) = τ ġ(t0) + (1 + k2τ)g(t0)

Ċ1(t0) = τ g̈(t0) + (1 + k2τ)ġ(t0)

C0(t0) = τ2g̈(t0) +
[
τ(1 + k1τ) + τ(1 + k2τ)

]
ġ(t0) + (1 + k1τ)(1 + k2τ)g(t0)

Now we must simply insert the value of the function g(t) and its derivatives at t = 0. We can
easily derive g(t) = t2, ġ(t) = 2t, and g̈(t) = 2 such that g(0) = 0, ġ(0) = 0, and g̈(0) = 2.
Substituting these into the above expressions gives a consistent initialization for the original
DAE for g(t) = t2 i.e.,

C2(0) = 0

Ċ2(0) = 0

C1(0) = 0

Ċ1(0) = 2τ

C0(t0) = 2τ2

Deduct 2 points for missing for missing implicit constraint (4′′), which automati-
cally gives wrong equations for the initial conditions.

Deduct at most 4 points for missing the other implicit constraint and other math
errors.

4. (7 points) Using the method of auxiliary (dummy) variables, derive an equivalent index-1
DAE system.

Solution: As we know from lecture, we want to satisfy the implicit constraints when solving
higher index problems. However, the implicit constraints overspecify the problem such that
we have more equations than unknowns. For this problem, we have the original equations
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(1), (2), and (3) and implicit constraints (3′) and (4′′)

C0(t)− C1(t)
Ċ1(t) = k

τ
− 1C1(t) (1)

C˙ 1(t)
C2(t) =

− C2(t)
(

τ
− k2C2 t) (2)

C2(t) = g(t) (3)

Ċ2(t) = ġ(t) (3′)

1
g̈(t) = ˙ ˙ ˙C1(t) C2(t) k2C2(t) (4′′)

τ

One

(
− −

way to get around this is to use the method of

)
auxiliary (dummy) variables. Here, we

have two implicit constraints such that we need to replace two derivatives with auxiliary
˙variables. Only two derivatives appear in these equations such that we must replace C1(t)

with some new variable C1
′ ˙(t) and C2(t) with some new variable C2

′ (t).

C
C1
′ 0(t)
(t) =

− C1(t)

τ
− k1C1(t)

C ′2(t) =
C1(t)− C2(t)

k
τ

− 2C2(t)

C2(t) = g(t)

C2
′ (t) = ġ(t)

1
g̈(t) = C ′ (t) C ′ (t) k2C

′ (t)
τ

In

(
1 − 2

)
− 2

this case, we are left with only algebraic equations such that we can solve for all of these
variables analytically

C0(t) = τ2g̈(t) +
[
τ(1 + k1τ) + τ(1 + k2τ) ġ(t) + (1 + k1τ)(1 + k2τ)g(t)

C1(t) = τ ġ(t) + (1 + k

]
2τ)g(t)

C1
′ (t) = τ g̈(t) + (1 + k2τ)ġ(t)

C2(t) = g(t)

C2
′ (t) = ġ(t)

The system of purely algebraic equations (that are uniquely solvable) is an index-1 DAE since
a single derivative results in an equivalent ODE set.

Deduct 5 points for missing both implicit constraint (3′) and (4′′) if included
elsewhere in the problem. Only deduct 3 points if missing (3′) when included
elsewhere in the problem. Deduct 1 point for missing implicit constraint (4′′) if
not included elsewhere in the problem.

Deduct 2 points for not having a well-posed set of equations.

Deduct 1 point for not verifying your derived DAE was index-1.
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Problem 2. (35 points)

Consider the reaction, convection, and diffusion of an impurity I in a tubular reactor operating at
steady state, where an undesired autocatalytic reaction

A+ I −→ 2I

takes place. Assuming A is in excess, the impurity can be modeled by the second-order differential
equation

dC
v
dx

= D
d2C

+ kCA0C (1)
dx2

where C(x) denotes the concentration of the impurity, x ∈ [0, L] is the distance from the reactor
entrance, v denotes the velocity, D denotes the diffusion coefficient, k denotes the rate constant,
and CA0 denotes the excess concentration of A. The boundary conditions for this system are:

dC
vC(0)−D =

dx

∣∣∣∣ 0 (2)
x=0

C(L) = CL (3)

where CL denotes the maximum level of impurity that can be handled in the product.

1. (5 points) Derive an equivalent set of first-order ordinary differential equations (ODEs) for
the boundary value problem (1), with the vector of unknown (dependent) variables denoted
by u(x).

Solution: Let u = [dCdx , C]T . Then the first-order ODE system is

du

dx
=

[
v u1D − kCA0

D u2
u1

]
= Au,

where A =

[
v
D

−kCA0
D

1 0

]
.

Deduct at most 3 points for incorrect u

Deduct at most 2 points for math error in deriving A

2. (3 points) Define a two-point boundary condition function for the converted system of the
form

g(u(0),u(L)) = B0u(0) + BLu(L) + b = 0

Give expressions for B0, BL, and b.

Solution: Boundary conditions in terms of u are

vu2(0)−Du1(0) = 0

u2(L) = cL

which can be rewritten as

g(u(0),u(L)) =

[
−D v

]
0 0 0

u(0) + u
0 0

[
0 1

]
(L) +

[
−CL

]
= 0

6



0
with

[
0

B0 =
−D v 0

, BL = , and b =
0 0 0 1 −CL

Deduct 1 point for

]
incorrect

[
B

] [ ]
0

Deduct 1 point for incorrect BL

Deduct 1 point for incorrect b

3. (7 points) Describe the application of the shooting method on the set of ODEs derived in
part 1 to solve the original BVP from x = 0 to x = L.

Solution: Let u(0) = c. Initialize c(0) = c0 where c0 is some constant. During any kth
iteration of the shooting method, solve the IVP problem,

du
= Au, u(0) = ck.

dx

Refer to the IVP solution at x = L as u(L; ck). Then calculate the next boundary condition
at x = 0 based on both boundary conditions by solving the equation,

g(c,u(L; c)) = B0c + BLu(L; c)) + b = 0,

using Newton’s method. The Jacobian required for Newton’s method is then

∂g
J =

∂c
= B0 + BL

∂u(L; c)
.

∂c

We can compute the Newton’s step for ∆ck with J∆ck = −g. Using this, we update the
boundary condition at x = 0 as ck := ∆ck + α∆c, where α is the damping factor. This new
ck is then fed to the IVP problem, and the procedure is repeated at the next iteration until
the desired tolerance is met.

Deduct 1 point for not initializing shooting method.

Deduct 1 point for not stating the IVP equation.

Deduct 1 point for not defining input and output to function g(c,u(L; c)).

Deduct 1 point for Jacobian in Newton’s method.

Deduct 1 point for step size equation.

Deduct 1 point for the update rule in Newton’s method.

Deduct 1 point for termination of algorithm.

(Note: Deducted at most 3 points for not connecting IVP solution to Newton’s
method)

4. (8 points) Let D, v, k, CA0 > 0. Show that a forward Euler integration of the set of ODEs
derived in part 1 will be unstable for any choice of step size ∆x.

Solution: Check the stability of the original IVP problem by calculating the eigenvalues, λ1
and λ2, of A:

det

[
v

D
− λ −kCA0

D
1 −λ

]
= 0

λ1,2 =
v

2D
± 1

2

√( v 2

D

) kC− A0
4

D
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For any parameter values that result in eigenvalue with imaginary part, the real part v/(2D)
is positive for all positive parameter values. For all positive parameter values in which the

eigenvalues are real, max
∣∣∣12√( v

D

)2 − 4kCA0
D

∣∣∣ < v . Hence the real part of both eigenvalues2D

λ1,2 is greater than zero for all positive parameter values. Hence the forward Euler method
would be unstable for any choice of ∆x > 0.

Deduct at most 3 points for incorrect eigenvalues of A.

Deduct 2 points for not showing forward Euler stability condition |1 + ∆xλ| ≤ 1.

Deduct 1 point for not showing that both eigenvalues have positive real parts.

Deduct 1 point for not stating positive eigenvalues of A lead to unstable forward
Euler for any choice of ∆x.

5. (12 points) A colleague suggests shooting backwards from x = L to x = 0. Using that
approach, can a spatial discretization (i.e., ∆x) be chosen so that forward Euler integration
is stable? If so, provide an expression for ∆x that stabilizes the integration. Are there
any advantages to making the change from forward shooting to backward shooting from a
numerical point of view? Why, or why not?

Solution: For the[ backwards shooting method, define x̄ = L− x, and rewrite the first ODE

dC
system for ū =

dx̄
, C

]T
as

dū
= Āū,

dx̄

where Ā =

[−v
D

−kCA0
D

1 0

]
. The eigenvalues of Ā are

v
λ1,2 = −

2D
± 1

2

√( v
D

)2
− 4

kCA0

D

Now the real part of both eigenvalues λ1,2 is negative for all positive parameter values, using
similar argument as in the previous section. Hence, we can choose some ∆x so that the
forward Euler integration is stable, making the backward shooting method more numerically
advantageous than the forward shooting method for this problem. For the forward Euler
integration to be (absolutely) stable requires |1 + λ1,2∆x| ≤ 1.

To derive ∆x, we have to consider two cases inside the square root term:

(a) If
(
v
D

)2− 4kCA0 < 0, then both eigenvalues are complex conjugates. Since λ1,2 could beD
complex values in this case, write it as λi = a± bi, where a, b ∈ R such that a ≡ Re(λi)
and b ≡ Im(λi) Then the stability condition yields,

|1 + (a± bi)∆x| ≤ 1

or √
(1 + a∆x)2 + b2(∆x)2 ≤ 1

We can square both sides and get

(1 + a∆x)2 + b2(∆x)2 ≤ 1

8



which gives
2a∆x+ (a2 + b2)(∆x)2 ≤ 0

which since ∆x > 0, simplifies to

2a+ (a2 + b2)∆x ≤ 0

or
2a

∆x ≤ −
(a2 + b2)

.

In this case, the real part, a = − v
2D , is negative. Let’s define â = −a = v > 0. Then2D

the stability criterion for the step size is

2â
∆x ≤ .

(â2 + b2)

or
2

∆x
|Re(λ≤ i)|
|λi|2

since |λi|2 ≡ a2 + b2 = â2 + b2. We plug in the values for â and b to derive the step size
in terms of the given parameters.

v
â =

2D

b =
1

2

√
4
kCA0 v

D
−
(
D

)2
∆x ≤

2
(

v
2D

)(
v 2
2D

)
+ 1

4

[
−
(
v
D

)2
+ 4kCA0

D

]

Simplying the above yields,
v

∆x ≤ .
kCA0

In this case, the step size is bounded only by the ratio of the convection term to the
reaction term.

(b) If
(
v
D

)2 − 4kCA0 ,D ≥ 0, then both eigenvalues are real. For λi ∈ R

−1 ≤ 1 + λi∆x ≤ 1

which yields
−2 ≤ λi∆x ≤ 0.

Since the real part of the eigenvalue is negative as discussed earlier,

−2
∆

λi
≥ x ≥ 0

For any ∆x > 0,
2

∆x ≤
|λi|

9



The two eigenvalues may not be equal in magnitude unless
(
v
D

)2 − 4kCA0 = 0. Hence,D
our step size is then bounded by the eigenvalue with larger magnitude:

2
∆x ≤

max{|λ1|, |λ2|}

Since both eigenvalues are negative, the more negative eigenvalue would be the one that
is important in determining the stability criterion for the step size:

2
∆x ≤ ∣∣∣− v

2D −
1
2

√(
v
D

)2 − 4kCA0
D

2

∣∣
∴ ∆x

∣
≤

v
2D + 1

2

√(
v
D

)2 − 4kCA0
D

Deduct 3 points for not defining coordinate transformation.
¯Deduct 2 points for not calculating correct eigenvalues of the new A.

Deduct 1 point for not showing the stability criteria |1 + λ∆x| ≤ 1. Also,
needed to show that λ must be negative for numerical stability → backward
Euler is numerically advantageous.

Deduct 3 points for not calculating the step size ∆x for the real eigenvalue
case.

Deduct 3 points for not calculating the step size ∆x for the complex eigen-
value case.
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Problem 3. (30 points)

Consider a version of the unsteady reaction-convection-diffusion equation applied to electrons in a
semiconductor device (i.e., the drift-diffusion equations)

∂n

∂t
= Dn

∂2n

∂x2
+ vd

∂n
(1)

∂
−Bn 2

x
−Kn

where n(x, t) denotes the concentration of electrons, x ∈ [0, L] defines the spatial variable, Dn

denotes the electron diffusion coefficient, vd denotes the effective drift velocity, and B and K denote
band-to-band and Auger recombination rate constants, respectively. The initial and boundary
conditions for this system are

n(x, 0) = 0 (2)

n(0, t) = φ0 (3)

n(L, t) = φL (4)

where φ0 and φL are constants.

1. (12 points) Derive method-of-lines equations (using finite differencing) for the PDE (1) that
are second-order accurate in space. Grid the spatial domain from i = 0, 1, . . . , N+1. What is
the space between nodes, ∆x? Define an equation at every node in the interior of the domain
and give the initialization for the method-of-lines equations.

Solution: We grid the spatial domain with nodes positioned at i = 0, 1, 2, . . . , N + 1 that
correspond to 0, ∆x, 2∆x, . . . , L in the x-direction. There are a total of N + 2 points and
N + 1 line segments. Therefore, the spacing between nodes is ∆x = L .N+1

The method of lines results in a set of ODEs by approximating the spatial derivatives with
a finite difference approximation while keeping the time derivatives. Here, we are told to use
second-order accurate in space approximations (i.e., central differences)

∂n

∂x

∣∣∣∣
(xi)

≈ n(xi + ∆x, t)− n(xi −∆x, t)

2∆x
=
ni+1(t)− ni−1(t)

2∆x
(5)

∂2n
∣∣∣ n(xi + ∆x, t)− 2n(xi, t) + n(xi −∆x, t)

∂x2 ∣(xi)

≈
(∆x)2

=
ni+1(t)− 2ni(t) + ni−1(t)

(∆x)2
(6)

where ni(t) = n(i∆x, t). Substituting these approximations into the PDE (1) evaluated at
each node on the interior gives

dni n
= Dn

dt

[
i+1(t)− 2ni(t) + ni−1(t)

(∆x)2

]
+ vd

[
ni+1(t)− ni−1(t)

Bni(t) Kn (t)2i (7)
2∆x

]
− −

∀i = 1, 2, . . . , N

We must also include the boundary points n(0, t) = n0(t) = φ0 and n(L, t) = nN+1(t) = φL.
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Substituting these into the MOL equations gives

dn1
dt

= Dn

[
n2(t)− 2n1(t) + φ0

(∆x)2

]
+ vd

[
n2(t)− φ0

2∆x

]
−Bn1(t)−Kn1(t)2 (8)

dni n
= Dn

dt

[
i+1(t)− 2ni(t) + ni−1(t)

(∆x)2

]
+ vd

[
ni+1(t)− ni−1(t)

2∆x

]
−Bni(t)−Kni(t)2 (9)

∀i = 2, 3, . . . , N − 1

dnN
dt

= Dn

[
φL − 2nN (t) + nN−1(t)

(∆x)2

]
+ vd

[
φL − nN−1(t) 2

N
2∆

]
N

x
−Bn (t)−Kn (t) (10)

From the provided initial condition n(x, 0) = 0, we know that the electron concentration is
zero at all points in space at t = 0. This means we initialize the ODEs using n1(0) = n2(0) =
n3(0) = · · · = nN (0) = 0.

Deduct 2 points for incorrect ∆x = L .N+1

Deduct 1 point for not stating what type of differencing scheme was used for the
spatial derivatives and not stating their accuracy.

Deduct at most 5 points for incorrect MOL equations. Only 1 point was deducted
for not including the indices for which the equations are valid.

Deduct at most 2 points for incorrect boundary conditions.

Deduct at most 2 points for incorrect initial conditions (including indices).

2. (12 points) Derive the finite difference equations for the PDE (1) that are second-order
accurate in space and first-order accurate in time. Again, grid the spatial domain from
i = 0, 1, . . . , N + 1 and define an equation at every node in the interior of the domain. Is your
method explicit or implicit?

Solution: Again, we grid the spatial domain with nodes positioned at i = 0, 1, 2, . . . , N + 1
that must correspond to 0,∆x, 2∆x, . . . , L in the x-direction (the spacing between nodes is
∆x = L ). We also discretize in time with a step size of ∆t.N+1

In the finite difference method, we approximate all derivatives using finite differences. In
this case, we are told to use second-order-in-space (central differences) and first-order-in-time
(forward or backward) approximations. For simplicity, we will use a forward difference in
time approximation (a backward difference could alternatively be chosen). The derivatives in
the PDE are then approximated as

∂n

∂t

∣∣∣∣
(xi,tj)

≈ n(xi, tj + ∆t)− n(xi, tj)
j+1n

= i − jni
∆t ∆t

(11)

∂n
∣∣∣ n(xi + ∆x, tj)− n(xi −∆x, tj)

∂x ∣(xi,tj)

≈
2∆x

=
nji+1 − n

j
i−1

2∆x
(12)

∂2n

∂x2

∣∣∣∣
(xi,tj)

≈ n(xi + ∆x, tj)− 2n(xi, tj) + n(xi −∆x, tj)

(∆x)2
=
nji+1 − 2nji + nji−1 (13)

(∆x)2
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jwhere ni = n(i∆x, j∆t). We can substitute these approximations into the original PDE (1),
which gives

j+1ni − jni
∆t

= Dn

[
nji+1 − 2nji + nji−1

(∆x)2

]
+ vd

[
nji+1 − n

j
i−1 )

2∆
− j jBn

x i −K(n 2
i (14)

∀i = 1, 2, . . . , N,

]
∀j ≥ 0

j jOur boundary conditions must also be included: n(0, t) = n0 = φ0 and n(L, t) = nN+1 = φL
for all j ≥ 0. Substituting these boundary conditions into the discretized equation gives

j+1n1 − jn1
∆t

= Dn

[
nj2 − 2nj1 + φ0

(∆x)2

]
+ vd

[
nj2 − φ0

2∆x

]
−Bnj1 −K(nj1)

2, ∀j ≥ 0 (15)

nj+1
i − nji

jn
= Dn

∆t

[
i+1 −

j j2ni + ni−1
(∆x)2

]
+ vd

[
nji+1 − n

j
i−1

2∆x

]
−Bnji −K(nji )

2 (16)

∀i = 2, 3, . . . , N − 1, ∀j ≥ 0

nj+1
N − njN

∆t
= Dn

[
φL − 2njN + njN−1

(∆x)2

]
+ vd

[
φL − njN−1 jB

2∆x

]
− nN −

jK(nN )2, ∀j ≥ 0 (17)

We can initialize these algebraic equations using the provided initial condition n(x, 0) = 0.
The discretized form is n(x, 0) = n0i = 0, ∀i = 1, . . . , N (i.e., n01 = n02 = n03 = · · · = n0N = 0).

Since we used the forward difference for the time derivative, our method is explicit, which is
j+1easily verified by looking at the derived algebraic equations where the unknowns ni for all

i = 1, . . . , N (all spatial points at the next time instant) appear only once on the left-hand side
of the equations. If a backward difference approximation was used for the time derivative, we
would get an implicit method as the unknowns would appear on both sides of the equations
and would need to be computed by solving nonlinear equations.

Deduct 1 point for not stating what type of differencing scheme was used for the
temporal derivative and not stating its accuracy.

Deduct 1 point for not stating what type of differencing scheme was used for the
spatial derivatives and not stating their accuracy.

Deduct at most 5 points for incorrect finite difference equations. At most 1 point
was deducted for not including the indices for which the equations are valid.

Deduct at most 1 point for incorrect boundary conditions.

Deduct at most 2 points for incorrect initial conditions (including indices).

Deduct 2 points for incorrectly identifying your scheme as explicit or implicit.

3. (6 points) Estimate the concentration of electrons at the midpoint x = L/2 and at time
t = 1 using the derived finite difference equations from part 2 with a spatial discretization of
∆x = L/2 and temporal discretization of ∆t = 1. Write your answer in terms of parameters
and any provided initial and boundary conditions in equations (2)–(4).

Solution: Here, we can use the derived equations from part 2 of the problem. We only have
three total points: i = 0 corresponds to x = 0, i = 1 corresponds to x = L/2, and i = 2
corresponds to x = L. Let us evaluate (14) at our midpoint node i = 1 i.e.,

j+1n1 − jn1
∆t

= Dn

[
nj2 − 2nj1 + nj0

jn
+

(∆x)2

]
vd

[
2 −

jn0
2∆x

]
−Bnj1 −K(nj1)

2, j ≥ 0 (18)
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jWe again know from our boundary conditions that n(0, t) = n0 = φ0, j ≥ 0 and n(L, t) =
jn2 = φL, j ≥ 0. We also know that ∆x = L/2 and ∆t = 1. Substituting these gives us a

reduced expression in terms of our known boundary conditions and parameters

j+1 n
1 − j 4D
n n1 =

L2

(
φL − 2nj1 + φ0

)
+
vd j jφL − φ0 −Bn1 −K(n
L 1)

2, j ≥ 0 (19)

As seen in part 2, the initial condition gives us

(
that our

)
middle node has a value of zero

initially. As j = 0 corresponds to t = 0, we know that n01 = 0. The midpoint at t = 1 is
approximately n(L/2, 1) = n(∆x,∆t) ≈ n11. Evaluating (19) at j = 0, we can get an explicit
approximation for n11 i.e.,

0

n1 �7
1 − �n

0 4Dn
1 =

L2

(
φL − 2�

�7
0

n01 + φ0

)
+
vd
L

(
φL − φ0

)
−B�

�7
0

n01 −K(�
�7

0

n01 )2 (20)

n(L/2, 1) ≈ n11 =
4Dn

L2

(
φL + φ0

)
+
vd

(21)
L

(
φL − φ0

)

Deduct 1 point for incorrect substitution of ∆x = L/2.

Deduct 1 point for incorrect substitution of ∆t = 1.

Deduct at most 4 points for incorrect equations and other math errors.
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