1.3.5 The Determinant Of A Square Matrix

In section 1.3.4 we have seen that the condition of existence and uniqueness for solutions to $\mathrm{A} \underline{x}=\underline{\mathrm{b}}$ involves whether $\mathrm{K}_{\mathrm{A}}=\underline{0}$, i.e. only $\underline{\mathrm{w}}=\underline{0}$ has the property that $\mathrm{A} \underline{\mathrm{w}}=\underline{0}$.

To use this result, we need a method by which we can examine the elements of A to determine if $\mathrm{K}_{\mathrm{A}}=\underline{0}$.

For $\mathrm{N}=1$, this is simple. For the single equation
$\mathrm{Ax}=\mathrm{b}$
If $a \neq 0$, we have a single (unique) solution $x=\frac{b}{a}$. If $a=0$, then if $b=0$, there exists an infinite number of solutions. If $\mathrm{b} \neq 0$, there is no solution.

For $\mathrm{N}>1$, we want a similar rule. Given an $\mathrm{N} \times \mathrm{N}$ real matrix A, we want a rule to calculate a scalar called the determinant, $\operatorname{det}(\mathrm{A})$, such that
$\operatorname{det}(\mathrm{A})=\left\{\begin{array}{l}0, \text { then } \mathrm{A} \underline{x}=\underline{b} \text { has no unique soltuion } \\ \mathrm{c}, \mathrm{c} \neq 0, \text { then } \mathrm{A} \underline{x}=\underline{b} \text { has a unique solution }\end{array}\right.$
Since this determinant is to be used to determine whether a system $\mathrm{A} \underline{x}=\underline{\mathrm{b}}$ will have a unique solution, we can identify some characteristics that a suitable functional form of $\operatorname{det}(\mathrm{A})$ must possess.

Characteristic \#1:

If we multiply any equation in our system, say the $\mathrm{jth} \mathrm{a}_{\mathrm{j} 1} \mathrm{X}_{1}+\mathrm{a}_{\mathrm{j} 2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{\mathrm{jN}} \mathrm{X}_{\mathrm{N}}=\mathrm{b}_{\mathrm{j}}$ (1.3.5-3) by a scalar $c \neq 0$, we obtain an equation
$\mathrm{ca}_{\mathrm{j} 1} \mathrm{X}_{1}+\mathrm{ca}_{\mathrm{j} 2} \mathrm{X}_{2}+\ldots+\mathrm{ca}_{\mathrm{jN}} \mathrm{X}_{\mathrm{N}}=\mathrm{cb}_{\mathrm{j}} \quad$ (1.3.5-4)
As this new equation is completely equivalent to the first one, the determinants of the following 2 matrices should either both be zero or both be non-zero.
$\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 N} \\ : & : & & : \\ a_{j N} & a_{j 2} & \ldots & a_{j N} \\ : & : & & : \\ a_{\mathrm{N} 1} & a_{\mathrm{N} 2} & \ldots & a_{\mathrm{NN}}\end{array}\right]$ and $\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 \mathrm{~N}} \\ : & : & & : \\ c a_{j \mathrm{~N}} & c a_{\mathrm{j} 2} & \ldots & c a_{\mathrm{jN}} \\ : & : & & : \\ a_{\mathrm{N} 1} & a_{\mathrm{N} 2} & \ldots & a_{\mathrm{NN}}\end{array}\right]$
Moreover, if $\mathrm{c}=0$, then even if $\operatorname{det}(\mathrm{A}) \neq 0$, the determinant of the $2^{\text {nd }}$ matrix in (1.3.5-5) should be zero.

We note that we can satisfy these requirements if our determinant function has the property that the determinant of the $2^{\text {nd }}$ matrix is $\mathrm{c} * \operatorname{det}(\mathrm{~A})$.

Characteristic \#2.

The existence of a solution to $\mathrm{A} \underline{x}=\underline{b}$ does not depend upon the order in which we write the equations. Therefore, we must be able to exchange any 2 rows in a matrix without affecting whether the determinant is zero or non-zero.

One way to satisfy this is if A' is the matrix obtained from A by interchanging any 2 rows, then our determinant should satisfy $\operatorname{det}\left(A^{\prime}\right)= \pm \operatorname{det}(A)$. (1.3.5-6)

Characteristic \#3:

We can write the following 3 equations
$x+y+z=4$
$2 x+y+3 z=7$
$3 x+y+6 z=2$
in matrix form with the labels
$\mathrm{x}_{1}=\mathrm{x} \quad \mathrm{x}_{2}=\mathrm{y} \quad \mathrm{x}_{3}=\mathrm{z}$
to yield the matrix
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6\end{array}\right]$

We could just as well label the unknowns by
$\mathrm{x}_{1}=\mathrm{x} \quad \mathrm{x}_{2}=\mathrm{z} \quad \mathrm{x}_{3}=\mathrm{y}$
(1.3.5-9)

In which case we obtain a matrix
$A^{\prime}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 1 \\ 3 & 6 & 1\end{array}\right]$
Obviously, such an interchange of columns does nothing to affect the existence and uniqueness of solutions. Therefore either $\operatorname{det}(\mathrm{A})$ and $\operatorname{det}\left(\mathrm{A}^{\prime}\right)$ are both zero, or $\operatorname{det}(\mathrm{A})$ and $\operatorname{det}\left(A^{\prime}\right)$ are both non-zero.

One way to satisfy this is to make $\operatorname{det}\left(A^{\prime}\right)= \pm \operatorname{det}(A)$.

Characteristic \#4:

We can select any 2 equations, say $\# \mathrm{i}$ and $\# \mathrm{j}$,
$\mathrm{a}_{\mathrm{i} 1} \mathrm{X}_{1}+\mathrm{a}_{\mathrm{i} 2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{\mathrm{iN}} \mathrm{X}_{\mathrm{N}}=\mathrm{b}_{\mathrm{i}}$
$\mathrm{a}_{\mathrm{j} 1} \mathrm{X}_{1}+\mathrm{a}_{\mathrm{j} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{j} \mathrm{N}} \mathrm{X}_{\mathrm{N}}=\mathrm{b}_{\mathrm{j}}$
and replace them by the following 2 , with $\mathrm{c} \neq 0$

$$
\begin{align*}
& a_{i 1} X_{1}+a_{i 2} X_{2}+\ldots+a_{i N} x_{N}=b_{i} \\
& \left(c a_{i 1}+a_{j 1}\right) x_{1}+\left(c a_{i 2}+a_{j 2}\right) x_{2}+\ldots+\left(c a_{i N}+a_{j N}\right) x_{N}=\left(c b_{i}+b_{j}\right) \tag{1.3.5-12}
\end{align*}
$$

If A is the original matrix of the system, and A^{\prime} is the new matrix obtained after making this replacement, than either $\operatorname{det}(\mathrm{A})$ and $\operatorname{det}\left(\mathrm{A}^{\prime}\right)$ are both zero or they are both non-zero.

Characteristic \#5:

If $C=A B$, the viewing $C \underline{x}=\underline{b}$ as

We see that $\operatorname{det}(\mathrm{C}) \neq 0$ if and only if $\operatorname{both} \operatorname{det}(\mathrm{A}) \neq 0$ (so a unique Bx exists) and if $\operatorname{det}(B) \neq 0$.

One way to ensure this is if $\operatorname{det}(C)=\operatorname{det}(A) x \operatorname{det}(B) \quad(\mathbf{1 . 3 . 5 - 1 3})$

Characteristic \#6:

If any 2 rows of A are identical, the equations that they represent are dependent. We therefore do not have a unique solution, and must have $\operatorname{det}(\mathrm{A})=0$.

Similarly if all elements of a given row are zero, we have the equation $0=b_{j}$, which is inconsistent if $\mathrm{b}_{\mathrm{j}} \neq 0$. Therefore, we must have $\operatorname{det}(\mathrm{A})=0$.

Characteristic \#7:

If any 2 rows of A are equal, say columns $\# i$ and $\# j$, then for all $M \in[1, N] a_{M i}=a_{M j}$. We can therefore write each equation as
$\mathrm{a}_{\mathrm{M} 1} \mathrm{X}_{1}+\mathrm{a}_{\mathrm{M} 2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{\mathrm{Mi}} \mathrm{X}_{\mathrm{i}}+\ldots+\mathrm{a}_{\mathrm{Mj}} \mathrm{X}_{\mathrm{j}}+\ldots+\mathrm{a}_{\mathrm{MN}} \mathrm{X}_{\mathrm{N}}$
$=a_{M 1} X_{1}+a_{M 2} X_{2}+\ldots+a_{M i}\left(x_{i}+x_{j}\right)+\ldots+a_{M N} X_{N} \quad(1.3 .5-14)$
Since x_{i} and x_{j} only appear together in this system of equations as the sum $x_{i}+x_{j}$, we could make the following change for any c that would not affect Ax,
$\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{x}_{\mathrm{i}}+\mathrm{c} \quad \mathrm{x}_{\mathrm{j}} \leftarrow \mathrm{x}_{\mathrm{j}}-\mathrm{c} \quad(\mathbf{1 . 3 . 5 - 1 5)}$
Therefore, we must have $\operatorname{det}(\mathrm{A})=0$.
Similarly, if any column of A contains all zeros, $\operatorname{det}(A)=0$.

We now have identified a number of properties that any functional form for $\operatorname{det}(\mathrm{A})$ must have to be a proper measure of existence and uniqueness for $\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}}$.

We now propose a functional form for the determinant, and show that it does satisfy these characteristics.

We define the determinant of the Nx N matrix A as
$\operatorname{det}(A)=\sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \ldots . \sum_{i_{N}=1}^{N} E_{i_{1} i_{2}, \ldots, i_{N}} a_{i_{1}, 1} a_{i_{2}, 2} \ldots a_{i_{N}, N}$
Where
$E_{i_{1} i_{2}, \ldots i_{N}}\left\{\begin{array}{l}0, \text { if any two of }\left\{i_{1}, i_{2} \ldots, i_{N}\right\} \text { are equal } \\ +1, \text { if }\left(i_{1}, i_{2} \ldots, i_{N}\right) \text { is an even parity permutation } \\ -1, \text { if }\left(i_{1}, i_{2} \ldots, i_{N}\right) \text { is an odd parity permutation }\end{array}\right.$
By "even parity permutation" we mean the following. Since $\mathrm{E}_{\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{N}}}=0$ if any two of the set $\left\{i_{1}, i_{2} \ldots, i_{N}\right\}$, we know that the ordered set $\left(i_{1}, i_{2} \ldots, i_{N}\right)$, if $E_{i_{1} i_{2} \ldots i_{N}}$ is to be non-zero, must be related to the ordered set $(1,2,3, \ldots, N)$ by some shuffling of the order.

For example, consider $i_{1}=3, i_{2}=2, i_{3}=4, i=1$, so $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)=(3,2,4,1) \quad(1.3 .5-18)$

We want to perform a sequence of interchanges to put it in the order (1, 2, 3, 4).

Interchange \#3, (3, 1, 2, 4) $\rightarrow(1,3,2,4)$

Interchange \#4, (1, 3, 2, 4) $\rightarrow(1,2,3,4) \quad(1.3 .4-19)$

So we have put $(3,2,4,1)$ into order $(1,2,3,4)$ with four interchanges.

Note that we could do the same thing with only 2 interchanges:

$$
(3,2,4,1) \rightarrow(1,2,4,3) \rightarrow(1,2,3,4)
$$

(1.3.5-20)
or less efficiently, with six
$(3,2,4,1) \rightarrow(4,2,3,1) \rightarrow(2,4,3,1) \rightarrow(1,4,3,2) \rightarrow(1,4,2,3) \rightarrow(1,4,3,2) \rightarrow$ $(1,2,3,4) \quad(1.3 .5-21)$

The number of interchanges by which $(3,2,4,1)$ is reordered into $(1,2,3,4)$ is therefore not unique; however, what is unique is that $(3,2,4,1)$ can only be reordered into $(1,2,3$, $4)$ in an even $(0,2,4,6)$ number of steps.
$(3,2,4,1)$ is therefore said to be an even parity permutation of $(1,2,3,4)$.
If $\mathrm{N}=3$, we have the following parity assignments

Even	$\underline{\text { Odd }}$
$(1,2,3)$	$(3,2,1)$
$(2,3,1)$	$(2,1,3)$
$(3,1,2)$	$(1,3,2)$

even $=$ "clockwise order" odd $=$ "counter-clockwise order"
so $\mathrm{E}_{123}=\mathrm{E}_{231}=\mathrm{E}_{312}=+1 \quad, \quad \mathrm{E}_{321}=\mathrm{E}_{213}=\mathrm{E}_{132}=-1$
while $E_{111}=E_{112}=E_{121}=E_{233}=0$
(1.3.5-22)

For $\mathrm{N}=2, \mathrm{E}_{2}=+1, \mathrm{E}_{21}=-1$
(1.3.5-23)

For a 2×2 matrix,

$$
\begin{gather*}
\operatorname{det}(\mathrm{A})=\left|\begin{array}{c}
a_{11} a_{12} \\
a_{21} a_{22}
\end{array}\right|=\mathrm{E}_{12} \mathrm{a}_{11} \mathrm{a}_{22}+\mathrm{E}_{21} \mathrm{a}_{21} \mathrm{a}_{2}=\mathrm{a}_{11} \mathrm{a}_{2}-\mathrm{a}_{21} \mathrm{a}_{12} \tag{1.3.5-24}\\
\mathrm{i}=1 \quad \mathrm{i}_{1}=2 \\
\mathrm{i}_{2}=2 \quad \mathrm{i}_{2}=1
\end{gather*}
$$

For a 3×3 matrix A,
$\operatorname{det}(A)=\left|\begin{array}{l}a_{11} a_{12} a_{13} \\ a_{21} a_{22} a_{23} \\ a_{31} a_{32} a_{33}\end{array}\right|=\sum_{i_{1}=1}^{3} \sum_{i_{2}=1}^{3} \sum_{i_{3}=1}^{3} E_{i_{1}, i_{2}, i_{3}} a_{i_{1}, 1} a_{i_{2}, 2} a_{i_{3}, 3}$
We use this formula to rearrange $\operatorname{det}(\mathrm{A})$ into a more recognizable form. First, split the summation over i_{1} into $i_{1}=1$ and $i_{1} \neq 1$.
$\operatorname{det}(A)=\sum_{i_{2}=1}^{3} \sum_{i_{3}=1}^{3} E_{1, i_{2}, i_{3}} a_{11} a_{i_{2}, 2}, a_{i_{3}, 3}+\sum_{\substack{i_{1}=1, i_{2} \\ i_{1} \neq 1}}^{3} \sum_{i_{3}=1}^{3} E_{i_{1}, i_{2}, i_{3}}^{3} a_{i_{1}, 1} a_{i_{2}, 2} a_{i_{3}, 3}$
Now if $i_{1}=1$, then $E_{1, i_{2}, i_{3}}=0$ if $i_{2}=1$ or $i_{3}=0$, so the $1^{\text {st }}$ term becomes $\operatorname{det}(A)=$ $\mathrm{a}_{11} \sum_{i_{2}=1}^{3} \sum_{i_{3}=2}^{3} \mathrm{E}_{1, \mathrm{i}_{2}, \mathrm{i}_{3}} \mathrm{a}_{11} \mathrm{a}_{\mathrm{i}_{2}, 2} \mathrm{a}_{\mathrm{i}_{3}, 3}+\sum_{\substack{\mathbf{i}_{1}=1, \mathrm{i}_{1}=1 \\ \mathrm{i}_{1} \neq 1}}^{3} \sum_{\mathrm{i}_{3}=1}^{3} \mathrm{E}_{\mathrm{i}_{1}, \mathrm{i}_{2}, i_{3}} \mathrm{a}_{\mathrm{i}_{1}, 1} \mathrm{a}_{\mathrm{i}_{2}, 2} \mathrm{a}_{\mathrm{i}_{3}, 3}$

We now split the summation over i_{2},
$\operatorname{det}(A)=a_{11} \sum_{i_{2}=2}^{3} \sum_{i_{3}=2}^{3} E_{1, i_{2}, i_{3}} a_{i_{2}, 2} a_{i_{3}, 3}+a_{12} \sum_{\substack{i_{1}=1, i_{3}=1 \\ i_{1} \neq 1}}^{3} \sum_{i_{3}}^{3} E_{i_{1}, 1, i_{3}} a_{i_{1}, 1} a_{i_{3}, 3}+\sum_{\substack{i_{1}=1, i_{2}=1 \\ i_{1} \neq 1}}^{3} \sum_{i_{2}=1}^{3} i_{i_{3}=1}^{3} E_{i_{1}, i_{2}, i_{3}} a_{i_{1}, 1} a_{i_{2}, 2} a_{i_{3}, 3}$

(1.3.5-28)

Then, we split the summation over i_{3},
$\operatorname{det}(\mathrm{A})=$

(1.3.5-29)

Now for every term in the last summation of (1.3.5-29) $i_{1} \neq 1, i_{2} \neq 1, i_{3} \neq 1$. This means that there must be some repeated index, e.g. $i_{2}=i_{3}$, in each term and so $E_{i_{1}, i_{2}, i_{3}}=0$.

This last term is therefore zero and we have
$\operatorname{det}(A)=a_{11} \sum_{i_{2}=2}^{3} \sum_{i_{3}=2}^{3} E_{1, i_{2}, i_{3}} a_{i_{2}, 2} a_{i_{3}, 3}+a_{12} \sum_{\substack{i_{1}=1,1 \\ i_{1} \neq 1}}^{3} \sum_{i_{3}=1}^{3} E_{i_{1}, 1, i_{3}} a_{i_{1}, 1} a_{\substack{ \\i_{3}, 3}}+a_{\substack{3}} \sum_{\substack{i_{1}=1, i_{2}=1 \\ i_{1} \neq 1}}^{3} \sum_{\substack{2 \\ i_{2}}}^{3} E_{i_{1}, i_{2}, 1}, a_{i_{1}, 1}, a_{i_{2}, 2}$
Here we have added restriction $i_{3} \neq 1$ on the summation in the $2^{\text {nd }}$ term on the right since $\mathrm{i}_{2}=1$ and $\mathrm{E}_{\mathrm{i}_{1}, 1, \mathrm{i}_{3}}=0$ if $\mathrm{i}_{3}=1$.

We now note that since 1 is the smallest number,

$$
\mathrm{E}_{1, \mathrm{i}_{2}, \mathrm{i}_{3}}\left\{\begin{array}{l}
+1, \text { if } \mathrm{i}_{2}<\mathrm{i}_{3} \tag{1.3.5-31}\\
-1, \text { if } \mathrm{i}_{3}<\mathrm{i}_{2} \\
0, \text { if } \mathrm{i}_{2}=\mathrm{i}_{3}
\end{array}\right.
$$

and so we can write $\mathrm{E}_{1, \mathrm{i}_{2}, \mathrm{i}_{3}}=\mathrm{E}_{\mathrm{i}_{2}, \mathrm{i}_{3}}$.
Next we look at $\mathrm{E}_{\mathrm{i}_{1}, 1, \mathrm{i}_{3}}$. By performing one interchange, we have $\left(i_{1}, 1, i_{3}\right) \rightarrow\left(1, i_{1}, i_{3}\right)$.

So if, $\left(i_{1}, 1, i_{3}\right)$ is odd, $\left(1, i_{1}, i_{3}\right)$ is even
$\operatorname{If}\left(i_{1}, 1, i_{3}\right)$ is even, $\left(1, i_{1}, i_{3}\right)$ is odd
In any event, $\mathrm{E}_{\mathrm{i}_{1}, 1, \mathrm{i}_{3}}=-\mathrm{E}_{1, \mathrm{i}_{1}, \mathrm{i}_{3}}=-\mathrm{E}_{\mathrm{i}_{1}, \mathrm{i}_{3}}$

Finally for $\left(i_{1}, I, 1\right)$ we not that in 2 interchanges
$\left(i_{1}, i_{2}, 1\right) \rightarrow\left(1, i_{2}, i_{1}\right) \rightarrow\left(1, i_{1}, i_{2}\right)$
so that $E_{i_{1}, i_{2}, 1}=E_{1}, i_{1}, i_{2}=E_{i_{1}, i_{2}}$
We therefore have

$$
\begin{equation*}
\operatorname{det}(A)=a_{11} \sum_{i_{2}=2}^{3} \sum_{i_{3}=2}^{3} E_{i_{2}, i_{3}} a_{i_{2}, 2} a_{i_{1}, 3}-a_{12} \sum_{\substack{i_{1}, 1,1, i_{3}=1, i_{1} \neq 1}}^{3} \sum_{i_{1} \neq 1}^{3} E_{1} a_{i_{3}} a_{i_{1}, 1} a_{i_{3}, 3}+a_{13} \sum_{i_{1}=2}^{3} \sum_{i_{2}=2}^{3} E_{i_{1}, i_{2}} a_{i_{1}, 1} a_{i_{2}, 2} \tag{1.3.5-34}
\end{equation*}
$$

Using the determinant formula for a 2×2 matrix (1.3.5-24), we see that

$$
\begin{align*}
& \sum_{i_{2}=2}^{3} \sum_{i_{3}=2}^{3} E_{i_{2}, i_{3}} a_{i_{2}, 2} a_{i_{3}, 3}=a_{22} a_{33}-a_{32} a_{23}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \tag{1.3.5-35}\\
& \sum_{i_{1}=2}^{3} \sum_{i_{3}=2}^{3} E_{i_{1}, i_{3}} a_{i_{1}, 1} a_{i_{3}, 3}=a_{21} a_{23}-a_{31} a_{33}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \tag{1.3.5-36}\\
& \sum_{i_{1}=2}^{3} \sum_{i_{2}=2}^{3} E_{i_{1}, i_{2}} a_{i_{1}, 1} a_{i_{2}, 2}=a_{21} a_{32}-a_{31} a_{22}=\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \tag{1.3.5-37}
\end{align*}
$$

This yields the familiar formula for the determinant of a 3×3 matrix

$$
\left|\begin{array}{l}
a_{11} a_{12} a_{13} \tag{1.3.5-38}\\
a_{21} a_{22} a_{23} \\
a_{31} a_{32} a_{33}
\end{array}\right|=\mathrm{a}_{11}\left|\begin{array}{ll}
\mathrm{a}_{22} & a_{23} \\
\mathrm{a}_{32} & a_{33}
\end{array}\right|-\mathrm{a}_{12}\left|\begin{array}{ll}
\mathrm{a}_{21} & a_{23} \\
\mathrm{a}_{31} & a_{33}
\end{array}\right|+\mathrm{a}_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

In the general formula (1.3.5-16) for $\operatorname{det}(\mathrm{A})$, we must have an expression that is define for $\mathrm{N}>3 \mathrm{~m}$ and that allows us to prove various properties of the determinant to show that it is valid measure for determining existence/uniqueness of solutions.

In general, we can determine the parity (even or odd) of a permutation $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ by the following method:

For each $M=1,2, \ldots, N$, let α_{M} be the number of integers in the set $\left\{i_{M+1}, i_{M+2}, \ldots, i_{N}\right\}$ that are smaller then i_{M}.

The total number of inversion (pairwise interchanges) required to reorder $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ into $(1,2, \ldots, \mathrm{~N})$ using a particular straight-forward strategy is

$$
\begin{equation*}
\mathrm{V}=\sum_{\mathrm{M}=1}^{\mathrm{N}-1} \alpha_{\mathrm{M}} \tag{1.3.5-39}
\end{equation*}
$$

If v is even, $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ is even (note : 0 counts as even).
If v is odd, $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ is odd parity permutation.
This provides a well-defined rule to determining the value of $\mathrm{E}_{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{N}}}$

Look at some examples:
$(1,2,3,4): \alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0, v=0$ (even) $E_{1234}=+1$
$(1,3,2,4): \alpha_{1}=0, \alpha_{2}=1, \alpha_{3}=0, v=1$ (odd) $E_{1324}=-1$
$(3,4,1,2): \alpha_{1}=2, \alpha_{2}=2, \alpha_{3}=0, v=4$ (even) $E_{3412}=+1$

We now use the definition (1.3.5-16) of the determinant to prove several properties of the determinant.

Property I:

$$
\begin{equation*}
\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det}(\mathrm{A}) \tag{1.3.5-40}
\end{equation*}
$$

Proof:
The determinant of the transpose of A is $\operatorname{det}\left(A^{T}\right)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{i_{1}, 1}^{T} \ldots a_{i_{N}, N}^{T}$

Now, for every permutation $\left(i_{1}, i_{2}, \ldots, I_{N}\right)$, there exists another permutation $\left(j_{1}, j_{2}, \ldots, \mathrm{j}_{\mathrm{N}}\right)$ such that

$$
\begin{equation*}
a_{i_{1}, 1} a_{i_{2}, 2} \ldots a_{i_{N}, N}=a_{1, j_{1}} a_{2, j_{2}} \ldots a_{N, j_{N}} \tag{1.3.5-42}
\end{equation*}
$$

order of $1^{\text {st }}$ subscripts $\quad\left(i_{1}, i_{2}, \ldots, i_{N}\right) \quad(1,2,3 \ldots, N)$
order of $2^{\text {nd }}$ subscripts $(1,2, \ldots, N) \quad\left(j_{1}, j_{2}, \ldots, j_{N}\right)$
If we perform v pairwise exchanges to convert $\left(i_{1}, i_{2}, \ldots, i_{N}\right) \quad \rightarrow(1,2, \ldots, N)$, Then in the same \# of steps $(1,2, \ldots, N) \rightarrow\left(j_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{N}}\right)$.

Therefore, $\mathrm{E}_{\mathrm{i}_{1}, \ldots \mathrm{i}_{\mathrm{N}}}=\mathrm{E}_{\mathrm{j}_{1}, \ldots \mathrm{j}_{\mathrm{N}}} \quad(\mathbf{1 . 3 . 5 - 4 3)}$
Using the definition of the transpose, $a_{i j}^{T}=a_{j i}$, so the determinant becomes

$$
\begin{equation*}
\operatorname{det}\left(A^{T}\right)=\sum_{j_{1}=1}^{N} \ldots \sum_{j_{N}=1}^{N} E_{j_{1}, \ldots . \mathrm{j}_{\mathrm{N}}} a_{1, \mathrm{j}_{1}} a_{2, \mathrm{j}_{2}} . . \mathrm{a}_{\mathrm{N}, \mathrm{j}_{\mathrm{N}}} \tag{1.3.5-44}
\end{equation*}
$$

Using (1.3.5-42) and (1.3.5-43), we have

$$
\operatorname{det}\left(A^{T}\right)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots, i_{N}} a_{i_{1}, 1} a_{i_{2}, 2} . . a_{i_{N}, N}=\operatorname{det}(A) \quad \text { (1.3.5-45) } \quad \text { Q.E.D. }
$$

Property II:

If every element in a row (column) of A is zero, then $\operatorname{det}(\mathrm{A})=0$.
Proof:

Let every element in column \#M of A be zero. Then, in the formula for the determinant,

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{i_{1}, 1} a_{i_{2}, 2} \ldots a_{i_{M}, M} \ldots a_{i_{N}, N} \tag{1.3.5-46}
\end{equation*}
$$

We see that $\mathrm{a}_{\mathrm{i}_{\mathrm{M}}, \mathrm{M}}=0$ for all i_{M}. As every term in the summation is therefore zero, $\operatorname{det}(\mathrm{A})$ $=0$.

Let us now say that every element in row \#M of a matrix B is zero. When we take the transpose, $b^{T}{ }^{\mathrm{Tij}}=\mathrm{b}_{\mathrm{ji}}$, so every element in the mth column of B^{T} is zero. By the result above, $\operatorname{det}\left(B^{T}\right)=0$. Using property I, (1.3.5-45), we then have $\operatorname{det}(B)=0$.
Q.E.D.

Property III:

If every element in a row (column) of a matrix A is multiplied by a scalar c to form a matrix B, then $\operatorname{det}(B)=c^{*} \operatorname{det}(A)$.

$$
\mathrm{A}=\left[\begin{array}{cccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{~N}} \tag{1.3.5-47}\\
: & : & & : \\
\mathrm{a}_{\mathrm{M} 1} & \mathrm{a}_{\mathrm{M} 2} & \ldots & \mathrm{a}_{\mathrm{MN}} \\
: & : & & : \\
\mathrm{a}_{\mathrm{N} 1} & \mathrm{a}_{\mathrm{N} 2} & \ldots & \mathrm{a}_{\mathrm{NN}}
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{~N}} \\
: & : & & : \\
\mathrm{ca}_{\mathrm{M} 1} & \mathrm{ca}_{\mathrm{M} 2} & \ldots & \mathrm{ca}_{\mathrm{MN}} \\
: & : & & : \\
\mathrm{a}_{\mathrm{N} 1} & \mathrm{a}_{\mathrm{N} 2} & \ldots & \mathrm{a}_{\mathrm{NN}}
\end{array}\right]
$$

Proof:
We write the determinant for B , obtained from A by multiplying every element in row \# M by a scalar c , as

$$
\begin{equation*}
\operatorname{det}(B)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} b_{i_{1}, 1} b_{i_{2}, 2} \ldots b_{\mathrm{i}_{\mathrm{M}}, \mathrm{M}} \ldots b_{\mathrm{i}_{\mathrm{N}}, \mathrm{~N}} \tag{1.3.5-48}
\end{equation*}
$$

As $\operatorname{det}(B)=\operatorname{det}\left(B^{T}\right)$, we can also write the determinant as

$$
\begin{equation*}
\operatorname{det}(B)=\operatorname{det}\left(B^{T}\right)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} b_{1, i_{1}} b_{2, \mathrm{i}_{2}} \ldots b_{M, \mathrm{i}_{M}} \ldots . b_{\mathrm{N}, \mathrm{i}_{\mathrm{N}}} \tag{1.3.5-49}
\end{equation*}
$$

Substituting for b_{ij} in terms of a_{ij}, c we have

$$
\begin{aligned}
\operatorname{det}(B) & =\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{1, i_{1}} a_{2, \mathrm{i}_{2}} \ldots c a_{M, i_{\mathrm{M}}} \ldots a_{N, i_{\mathrm{N}}} \\
& =\mathrm{c} \sum_{\mathrm{i}_{1}=1}^{\mathrm{N}} \ldots \sum_{i_{\mathrm{N}}=1}^{\mathrm{N}} \mathrm{E}_{\mathrm{i}_{1}, \ldots i_{\mathrm{N}}} \mathrm{a}_{1, \mathrm{i}_{1}} a_{2, \mathrm{i}_{2}} \ldots \mathrm{a}_{\mathrm{N}, \mathrm{i}_{\mathrm{N}}} \\
& \left.=\mathrm{c}^{*} \operatorname{det}\left(\mathrm{~A}^{\mathrm{T}}\right)=\mathrm{c} \operatorname{det}(\mathrm{~A}) \quad \mathbf{(1 . 3 . 5 - 5 0}\right)
\end{aligned}
$$

From the rule $\operatorname{det}(\mathrm{A})=\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)$, it is clear that this formula holds also if we were to multiply every element in a column of A by the scalar c .
Q.E.D.

Property IV:

If 2 rows (columns) of A are interchanged to form a matrix B, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
Proof:
Let us interchange columns \#r and s, $\mathrm{r}<\mathrm{s}$

$$
A=\left[\begin{array}{ccccccc}
a_{11} & \ldots & a_{1 r} & \ldots & a_{1 s} & \ldots & a_{1 \mathrm{~N}} \tag{1.3.5-51}\\
a_{21} & \ldots & a_{2 r} & \ldots & a_{2 s} & \ldots & a_{2 \mathrm{~N}} \\
: & & : & & : & & : \\
a_{\mathrm{N} 1} & \ldots & a_{\mathrm{Nr}} & \ldots & a_{\mathrm{Ns}} & \ldots & a_{\mathrm{NN}}
\end{array}\right] \quad B=\left[\begin{array}{ccccccc}
a_{11} & \ldots & a_{1 \mathrm{~s}} & \ldots & a_{1 \mathrm{r}} & \ldots & a_{1 \mathrm{~N}} \\
a_{21} & \ldots & a_{2 s} & \ldots & a_{2 \mathrm{r}} & \ldots & a_{2 \mathrm{~N}} \\
: & & : & & : & & : \\
a_{\mathrm{N} 1} & \ldots & a_{\mathrm{Ns}} & \ldots & a_{\mathrm{Nr}} & \ldots & a_{\mathrm{NN}}
\end{array}\right]
$$

We write the determinant B as

$$
\begin{array}{r}
\operatorname{det}(B)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots, i_{N}} b_{i_{1}, 1} b_{i_{2}, 2} \ldots b_{i_{r}, r} \ldots b_{i_{s}, s} \ldots b_{i_{N}, N} \\
= \tag{1.3.5-52}\\
\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{i_{1}, 1} a_{i_{2}, 2} \ldots a_{i_{r}, s} \ldots a_{i_{s}, r} \ldots a_{i_{N}, N} \quad(1.3 .5-6
\end{array}
$$

where we have used $\mathrm{b}_{\mathrm{i}_{\mathrm{i}}, r}=\mathrm{a}_{\mathrm{i}_{\mathrm{r}}, s}, \mathrm{~b}_{\mathrm{i}_{\mathrm{s}}, \mathrm{s}}=\mathrm{a}_{\mathrm{i}_{\mathrm{s}}, \mathrm{r}}$, according to the interchange of column \# r and \#s.

Now, if we use result for performing a pairwise interchange of i_{r} and i_{s},

$$
\begin{equation*}
E_{i_{1}, \ldots i_{r}, \ldots, i_{s}, \ldots, i_{N}}=-E_{i_{1}, \ldots, i_{s}, \ldots, i_{r}, \ldots, i_{N}} \tag{1.3.5-53}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{det}(B)=-\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{s}, \ldots, i_{r}, \ldots, i_{N}} a_{i_{1}, 1} a_{i_{2}, 2} \ldots a_{i_{r}, s} \ldots a_{i_{s}, r} \ldots a_{i_{N}, N} \tag{1.3.5-54}
\end{equation*}
$$

We are now free to re-label the dummy indices $i_{r} \Leftrightarrow i_{s}$, and to switch the order in which we multiply the factors in each term to write

$$
\begin{align*}
& \operatorname{det}(B)=- \\
& \quad \sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{r}, \ldots, i_{s}, \ldots, i_{N}} a_{i_{1}, 1} a_{i_{2}, 2} \ldots a_{i_{r}, r} \ldots a_{i_{s}, s}, \ldots a_{i_{N}, N} \quad \operatorname{det}(B)=-\operatorname{det}(A) \tag{1.3.5-55}
\end{align*}
$$

By using property $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det}(\mathrm{A})$, we can demonstrate (1.3.5-55) holds when we switch 2 rows. Q.E.D.

Property V:

If 2 rows (columns) of A are the same, $\operatorname{det}(\mathrm{A})=0$.
Proof:
Let B be the matrix that is obtained from A by interchanging the 2 rows (or columns) that are equal.
By property IV, $\operatorname{det}(B)=-\operatorname{det}(A)$.
But, since B and A are identical, $\operatorname{det}(A)=\operatorname{det}(B)$.
Therefore, we must have $\operatorname{det}(A)=0$. Q.E.D.

Property VI:

If $\underline{\mathrm{a}}^{(\mathrm{M})}$ is the mth row vector of A, and we decompose this row vector into 2 parts, arbitrarily

$$
\begin{equation*}
\underline{\mathrm{A}}^{(\mathrm{M})}=\underline{\mathrm{b}}^{(\mathrm{M})}+\underline{\mathrm{d}}^{(\mathrm{M})} \tag{1.3.5-56}
\end{equation*}
$$

And define matrices

$$
\mathrm{A}=\left[\begin{array}{cc}
\mathrm{a}^{(\mathrm{a}} & \tag{1.3.5-57}\\
: & : \\
\mathrm{a}^{(\mathrm{M})} & \\
: & : \\
\mathrm{a}^{(\mathrm{N})} &
\end{array}\right]
$$

$$
\mathrm{B}=\left[\begin{array}{c}
\mathrm{a}^{(\mathrm{a})} \\
: \\
\mathrm{a}^{(\mathrm{b}} \\
\\
\mathrm{b}^{(\mathrm{M})} \\
\vdots \\
\mathrm{a}^{(\mathrm{N})}
\end{array}\right]
$$

$\mathrm{D}=\left[\begin{array}{c}\mathrm{a}^{(1)}- \\ \vdots \\ \mathrm{a}^{(\mathrm{M})} \\ \vdots \\ \mathrm{a}^{(\mathrm{N})} \\ \mathrm{a}^{(}\end{array}\right]$

Then $\operatorname{det}(A)=\operatorname{det}(B)+\operatorname{det}(D) \quad(1.3 .5-58)$
Proof:
Write $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{1, i_{1}} \ldots a_{M, i_{M}} \ldots . a_{N, i_{N}}$
As $\mathrm{a}_{\mathrm{M}, \mathrm{i}_{\mathrm{M}}}=\mathrm{b}_{\mathrm{M}, \mathrm{i}_{\mathrm{M}}}+\mathrm{d}_{\mathrm{M}, \mathrm{i}_{\mathrm{M}}}$,

$$
\begin{array}{r}
\operatorname{det}(A)=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{1, i_{1}} \ldots\left(b_{M, i_{M}}+d_{M, i_{M}}\right) \ldots a_{N, i_{N}} \\
=\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{1, i_{1}} \ldots b_{M, i_{M}} \ldots . a_{N, i_{N}}+\sum_{i_{1}=1}^{N} \ldots \sum_{i_{N}=1}^{N} E_{i_{1}, \ldots i_{N}} a_{1, i_{1}} \ldots d_{M, i_{M}} \ldots d_{N, i_{d}} \tag{1.3.5-60}
\end{array}
$$

So, $\operatorname{det}(A)=\operatorname{det}(B)+\operatorname{det}(D) \quad$ Q.E.D.

Property VII:

If a matrix B is obtained from A by adding c times one row (column) of A to another row (column) of $A, \operatorname{det}(B)=\operatorname{det}(A)$.

Proof:
Let us define the following matrices in terms of their row vectors,

By property VI,
$\operatorname{Det}(B)=\operatorname{det}(A)+\operatorname{det}(D) \quad(1.3 .5-62)$
By property III,

$$
\begin{equation*}
\operatorname{det}(\mathrm{D})=\mathrm{c} * \operatorname{det}(\mathrm{E}) \tag{1.3.5-63}
\end{equation*}
$$

So that

$$
\begin{equation*}
\operatorname{det}(B)=\operatorname{det}(A)+c^{*} \operatorname{det}(E) \tag{1.3.5-64}
\end{equation*}
$$

But, as 2 rows of E are identical, by property $V, \operatorname{det}(E)=0$. Therefore

$$
\operatorname{det}(B)=\operatorname{det}(A) \quad(\mathbf{1 . 3 . 5 - 6 5}) \quad \text { Q.E.D. }
$$

Property VIII:

$$
\begin{equation*}
\operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) * \operatorname{det}(\mathrm{~B}) \tag{1.3.5-66}
\end{equation*}
$$

We demonstrate this only for a 2×2 matrix,

$$
\begin{aligned}
& \operatorname{det}(\mathrm{AB})=\sum_{\mathrm{i}_{1}=1}^{2} \sum_{\mathrm{i}_{2}=1}^{2} \mathrm{E}_{\mathrm{i}_{1}, \mathrm{i}_{2}}\left[\sum_{\mathrm{k}_{1}=1}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{~b}_{\mathrm{k}_{1}, \mathrm{i}_{1}}\left[\sum_{\mathrm{k}_{2}=1}^{2} \mathrm{a}_{2, \mathrm{k}_{2}} \mathrm{~b}_{\mathrm{k}_{2}, \mathrm{i}_{2}}\right]\right. \\
& =\sum_{\mathrm{i}_{1}=1}^{2} \sum_{\mathrm{i}_{2}=1}^{2} \mathrm{E}_{\mathrm{i}_{1}, \mathrm{i}_{2}} \sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{a}_{2, \mathrm{k}_{2}} \mathrm{~b}_{\mathrm{k}_{1}, \mathrm{i}_{1}} \mathrm{~b}_{\mathrm{k}_{2}, \mathrm{i}_{2}} \\
& =\mathrm{E}_{12} \sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{a}_{2, \mathrm{k}_{2}} \mathrm{~b}_{\mathrm{k}_{1}, 1} \mathrm{~b}_{\mathrm{k}_{2}, 2}+\mathrm{E}_{21} \sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{a}_{2, \mathrm{k}_{2}} \mathrm{~b}_{\mathrm{k}_{1}, 2} \mathrm{~b}_{\mathrm{k}_{2}, 1} \\
& =\sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{a}_{2, \mathrm{k}_{2}}\left[\mathrm{E}_{12} \mathrm{~b}_{\mathrm{k}_{1}, 1} \mathrm{~b}_{\mathrm{k}_{2}, 2}+\mathrm{E}_{21} \mathrm{~b}_{\mathrm{k}_{1}, 2} \mathrm{~b}_{\mathrm{k}_{2}, 1}\right] \\
& =\sum_{k_{1}=1}^{2} \sum_{\mathrm{k}_{2}=1}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{a}_{2, \mathrm{k}_{2}}\left[\mathrm{~b}_{\mathrm{k}_{1}, 1}^{\left[\mathrm{b}_{\mathrm{k}_{2}}, 2\right.}-\mathrm{b}_{\mathrm{k}_{1}, 2} \mathrm{~b}_{\mathrm{k}_{2}, 1}\right] \\
& =0 \text { if } \mathrm{k}_{1}=\mathrm{k}_{2} \\
& =\sum_{k_{1}=1}^{2} \sum_{\mathrm{k}_{2} \neq k_{1}}^{2} \mathrm{a}_{1, \mathrm{k}_{1}} \mathrm{a}_{2, \mathrm{k}_{2}}\left[\mathrm{~b}_{\mathrm{k}_{1}, 1} \mathrm{~b}_{\mathrm{k}_{2}, 2}-\mathrm{b}_{\mathrm{k}_{1}, 2} \mathrm{~b}_{\mathrm{k}_{2}, 1}\right] \\
& =\mathrm{a}_{11} \mathrm{a}_{22}\left[\mathrm{~b}_{11} \mathrm{~b}_{22}-\mathrm{b}_{12} \mathrm{~b}_{21}\right]+\mathrm{a}_{12} \mathrm{a}_{21}\left[\mathrm{~b}_{21} \mathrm{~b}_{12}-\mathrm{b}_{22} \mathrm{~b}_{11}\right] \\
& =\left[\mathrm{a}_{11} \mathrm{a}_{22}-\mathrm{a}_{12} \mathrm{a}_{21}\right]\left[\mathrm{b}_{11} \mathrm{~b}_{22}-\mathrm{b}_{12} \mathrm{~b}_{21}\right] \\
& =\operatorname{det}(\mathrm{A}) * \operatorname{det}(\mathrm{~B})
\end{aligned}
$$

Property IX:

If A is an upper-triangular or lower-triangular matrix, then $\operatorname{det}(A)$ is equal to the product of the elements along the principal diagonal.

Proof:

Let us consider

$$
\mathrm{L}=\left[\begin{array}{llll}
\mathrm{L}_{11} & & & \tag{1.3.5-67}\\
\mathrm{~L}_{211} & \mathrm{~L}_{22} & & \\
\mathrm{~L}_{\mathrm{N} 1} & \mathrm{~L}_{\mathrm{N} 2} & \ldots & \mathrm{~L}_{\mathrm{NN}}
\end{array}\right]
$$

Then

$$
\begin{equation*}
\operatorname{det}(\mathrm{L})=\sum_{\mathrm{i}_{1}=1}^{\mathrm{N}} \ldots \sum_{\mathrm{i}_{\mathrm{N}}=1}^{\mathrm{N}} \mathrm{E}_{\mathrm{i}_{1}, \ldots \mathrm{i}_{\mathrm{N}}} \mathrm{~L}_{\mathrm{i}_{1}, 1} \mathrm{~L}_{\mathrm{i}_{2}, 2} \ldots . \mathrm{L}_{\mathrm{i}_{\mathrm{N}}, \mathrm{~N}} \tag{1.3.5-68}
\end{equation*}
$$

For every permutation $\left(i_{i}, i_{2}, \ldots, I_{N}\right)$ of $(1,2, \ldots, N)$, we must have

$$
\begin{equation*}
\mathrm{i}_{1}+\mathrm{i}_{2}+\ldots+\mathrm{i}_{\mathrm{N}}=1+2+\ldots+\mathrm{N} \tag{1.3.5-69}
\end{equation*}
$$

So, in the expression above for $\operatorname{det}(\mathrm{L})$, if we have some $\mathrm{L}_{\mathrm{M}}, \mathrm{I}_{\mathrm{M}}$ where $\mathrm{I}_{\mathrm{M}}>\mathrm{M}$, then we must have some other $\mathrm{I}_{\mathrm{r}}<\mathrm{r}$ in the product. As $\mathrm{L}_{\mathrm{ir}, \mathrm{r}}=0$ for $\mathrm{I}_{\mathrm{r}}<\mathrm{r}$, all terms with any offdiagonal elements of L are zero. The only term in $\operatorname{det}(L)$ that survives is $i_{1}=1, i_{2}=2, \ldots$, $\mathrm{I}_{\mathrm{N}}=\mathrm{N}, \mathrm{E}_{\mathrm{i}_{1}, \ldots \mathrm{i}_{\mathrm{N}}}=\mathrm{E}_{1, \ldots \mathrm{i}_{\mathrm{N}}}=+1$,
So

$$
\begin{equation*}
\operatorname{det}(\mathrm{L})=\mathrm{L}_{11} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{NN}} \tag{1.3.5-70}
\end{equation*}
$$

Similar logic shows that for an upper-triangular matrix

$$
\mathrm{U}=\left[\begin{array}{cccc}
\mathrm{U}_{11} & \mathrm{U}_{11} & \ldots & \mathrm{U}_{11} \tag{1.3.5-72}\\
& \mathrm{U}_{11} & \ldots & \mathrm{U}_{11} \\
& & & : \\
& & & \mathrm{U}_{11}
\end{array}\right] \quad \text { (1.3.5-71), } \operatorname{det}(\mathrm{U})=\mathrm{U}_{11} \mathrm{U}_{22} \ldots \mathrm{U}_{\mathrm{NN}}
$$

Q.E.D.

We can now demonstrate that this functional form for $\operatorname{det}(A)$ satisfies all of the required characteristics that were identified on pages 1.3.5-2 and 1.3.5-5.

Characteristic \#	Follows from property
1	III
2	IV
3	IV
4	VII
5	VIII
6	II, V
7	II, V

We therefore have in equation (1.3.5-16) a form for $\operatorname{det}(\mathrm{A})$ that we can use to judge existence/unqueness.

In practice, the most efficient way to compute $\operatorname{det}(\mathrm{A})$, or at least its magnitude, is to use property IX. Since row operations do not change values of the determinant (property VII), and exchanging 2 rows only changes the sign (property IV), then after N^{3} FLOP's to perform Gaussian elimination with pivoting, we put A into an upper triangular form U such that

$$
\operatorname{det}(\mathrm{A})= \pm \mathrm{U}_{11} \mathrm{U}_{22} \ldots \mathrm{U}_{\mathrm{NN}} \quad \text { (1.3.5-73) }
$$

This method is much faster than performing all of the summations necessary to evaluate (1.3.5-16) directly.

