1.3.4 Null Space (kernel) and Existence/Uniqueness of Solutions

We now have the tools necessary to consider the existence and uniqueness of solutions to the linear system of equations

$$
\begin{equation*}
\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}} \tag{1.3.4-1}
\end{equation*}
$$

Where $\underline{x}, \underline{b} \in \mathbf{R}^{N}$ and A is a Nx N real matrix.
As described in section 1.3.1, we interpret A as a linear transformation that maps each $\underline{\mathbf{v}} \in \mathbf{R}^{\mathrm{N}}$ into some $\mathrm{A} \underline{\mathbf{v}} \in \mathbf{R}^{\mathrm{N}}$ according to the rule

$$
A \underline{v}=\left[\begin{array}{lcll}
a_{11} & a_{12} & \ldots & a_{1 \mathrm{~N}} \tag{1.3.4-2}\\
a_{21} & a_{22} & \ldots & a_{2 N} \\
: & : & & : \\
a_{N 1} & a_{\mathrm{N} 2} & \ldots & a_{\mathrm{NN}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{12} \\
: \\
v_{N}
\end{array}\right]=\left[\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+\ldots+a_{1 \mathrm{~N}} v_{N} \\
a_{21} v_{1}+a_{22} v_{2}+\ldots+a_{2 N} v_{N} \\
: \\
a_{\mathrm{N} 1} v_{1}+a_{2 N} v_{2}+\ldots+a_{N N} v_{N}
\end{array}\right]
$$

Pictorially, we view the problem of solving $\mathrm{A} \underline{x}=\underline{b}$ as finding the (or one of many?) vector(s) $\underline{\mathrm{x}} \in \mathbf{R}^{\mathrm{N}}$ that maps into a specific $\underline{\mathrm{b}}$ under A .

Here we have shown that for any real matrix A , the rule for forming Ave (1.3.4-3) guarantees that

$$
\mathrm{A} \underline{0}=\underline{0}
$$

(1.3.4-4)

Where $\underline{0}$ is the null vector, $\underline{0}=\left[\begin{array}{l}0 \\ 0 \\ : \\ 0\end{array}\right]$

We always have one vector, $\underline{0}$, that maps into $\underline{0}$ under A. Crucial to the question of existence and uniqueness of solutions is the existence of any other vectors $\underline{w} \neq \underline{0}$ that also map into $\underline{0}$ under A .

We define the null space (or kernel) of a real matrix A to be the set of all vectors $\underline{w} \in \mathbf{R}^{N}$ such that $\mathrm{A} \underline{\mathrm{w}}=\underline{0}$. Pictorially, we view the kernel of A , denoted K_{A}, as

We use the concept of the kernel (null space) to prove the following theorems on existence/uniqueness of solutions to $\mathrm{Ax}=\underline{\mathrm{b}}$.

Theorem 1.3.4.1

Let $\underline{x} \in \mathbf{R}^{N}$ be a solution to the linear system $A \underline{x}=\underline{b}$, where $\underline{b} \in \mathbf{R}^{N}$, A is an $N x$ N real matrix. If the kernel of A contains only the null vector, i.e. $\mathrm{K}_{\mathrm{A}}=\underline{0}$, then this solution is unique (no other solutions exist).

Proof:

Let \underline{x} satisfy $A \underline{x}=\underline{b}$. Let \underline{y} be some vector in \mathbf{R}^{N} that also satisfies the system of equations $\mathrm{Ay}=\underline{\mathrm{b}}$.

If we define $\underline{v}=\underline{y}-\underline{x}$, we can write this $2^{\text {nd }}$ solution as

$$
\underline{y}=\underline{x}+\underline{v} \quad \text { (1.3.4-6) }
$$

Then,

$$
\begin{equation*}
A \underline{y}=A(\underline{x}+\underline{v})=A \underline{x}+A \underline{v} \tag{1.3.4-7}
\end{equation*}
$$

Since \underline{x} is a solution, $\mathrm{A} \underline{x}=\underline{b}$, and

$$
\begin{equation*}
\mathrm{Ay}=\underline{b}+\mathrm{A} \underline{v} \tag{1.3.4-8}
\end{equation*}
$$

If y is to be a solution as well, then $A \underline{y}=\underline{b}$. This can then be the case only if

$$
\mathrm{A} \underline{\mathrm{v}}=\underline{0} \quad(1.3 .4-9)
$$

Therefore, if \underline{x} is a solution, every other solution must differ from \underline{x} by a vector $\underline{v} \in K_{A}$.
Since we have stated that for our matrix A, the only vector in the kernel is the null vector $\underline{0}$, there are no other solutions $\underline{y} \neq \underline{x}$ to $A \underline{x}=\underline{b}$.
Q.E.D. = "Quod Erat Demonstrondum"
"That which was to have been proven"
We have proven a theorem on uniqueness. We must not prove a theorem on existence.

To do so, we define the range of A, denoted R_{A}, to be the subset of all vectors $y \in \mathbf{R}^{N}$ such that there exists some $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ with $\mathrm{Av}=\underline{y}$.

Pictorially, we view the range as

No vectors map into the port of \mathbf{R}^{N} outside of the range.

Theorem 1.3.4.2:

Let A be a real $\mathrm{N} \times \mathrm{N}$ matrix with kernel $\mathrm{K}_{\mathrm{A}} \subset \mathbf{R}^{\mathrm{N}}$ and Range $\mathrm{R}_{\mathrm{A}} \subset \mathbf{R}^{\mathrm{N}}$. Then
(I) the dimensions of the kernel and of the range satisfy the "dimension theorem"

$$
\operatorname{dim}\left(\mathrm{K}_{\mathrm{A}}\right)+\operatorname{dim}\left(\mathrm{R}_{\mathrm{A}}\right)=\mathrm{N} \quad \text { (1.3.4-11) }
$$

(II) If the kernel contains only the null vector $\underline{0}, \operatorname{dim}\left(\mathrm{~K}_{\mathrm{A}}\right)=0$. As the range therefore has dimension $N, R_{A}=\mathbf{R}^{N}$, and for every $\underline{b} \in \mathbf{R}^{N}$, there exists some $\underline{x} \in \mathbf{R}^{\mathrm{N}}$ with $\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}}$ (existence).

Proof:

(I) Let us use an orthonormal basis $\left\{\underline{\mathrm{U}}^{[1],} \underline{\mathrm{U}}^{[2]}, \ldots, \underline{\mathrm{U}}^{[\mathrm{M}]}, \underline{\mathrm{U}}^{[\mathrm{M}+1]}, \ldots, \underline{\mathrm{U}}^{[\mathrm{N}]}\right\}$ For \mathbf{R}^{N} such that the $1^{\text {st }} \mathrm{M}$ vectors form a basis for the kernel K_{A}.

Since the kernel satisfies all the properties of a vector space itself, we can construct the M basis vectors for K_{A}, for example by Gram-Schmidt orthogonalization. Once we have identified these M basis vectors, we can continue with Gram-Schmidt orthogonalization to finish the basis set.

We can therefore write any $\underline{\underline{w}} \in \mathrm{~K}_{\mathrm{A}}$ as

$$
\underline{\mathrm{W}}=\mathrm{c}_{1} \underline{\mathrm{U}}^{[1]}+\mathrm{c}_{2} \underline{\mathrm{U}}^{[2]}+\ldots+\mathrm{c}_{\mathrm{MU}} \underline{\mathrm{U}}^{[\mathrm{M}]}
$$

And the dimension of the kernel is obviously M,

$$
\operatorname{dim}\left(K_{A}\right)=M \quad(1.3 .4-13)
$$

We now write any arbitrary vector $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ as an expansion in the basis,

$$
\begin{equation*}
\underline{\mathrm{v}}=v_{1}^{\prime} \underline{U}^{[1]}+v_{1}^{\prime} \underline{U}^{[1]}+\ldots+v_{M}^{\prime} \underline{U}^{[M]}+v_{M+1}^{\prime} \underline{U}^{[M+1]}+\ldots+v_{N}^{\prime} \underline{U}^{[N]} \tag{1.3.4-14}
\end{equation*}
$$

Then, taking the product with A,

$$
\begin{equation*}
\mathrm{A} \underline{\mathrm{v}}=\mathrm{A} \underbrace{\left(v_{1}^{\prime} \underline{U}^{[1]}+v_{1}^{\prime} \underline{U}^{[1]}+\ldots+v_{M}^{\prime} \underline{U}^{[M]}\right.}_{=0})+v_{M+1}^{\prime} A \underline{U}^{[M+1]}+\ldots+v_{N}^{\prime} A \underline{U}^{[N]} \tag{1.3.4-15}
\end{equation*}
$$

We therefore see that any vector $\mathrm{A} \underline{\mathrm{v}} \subset \mathbf{R}_{\mathrm{A}}$ can be written as a linear combination of the $\mathrm{N}-\mathrm{M}$ vectors $\left\{\mathrm{A}^{[\mathrm{M}+1]}, \ldots, \mathrm{AU}^{[\mathrm{N}]}\right\}$.

Therefore $\operatorname{dim}\left(\mathrm{R}_{\mathrm{A}}\right)=\mathrm{N}-\mathrm{M}$ and $\operatorname{dim}\left(\mathrm{K}_{\mathrm{A}}\right)+\operatorname{dim}\left(\mathrm{R}_{\mathrm{A}}\right)=\mathrm{N}$
(II) Follows directly

Taken jointly, theorems 1.3.4.1 and 1.3.4.2 demonstrate that if $K_{A}=\underline{0}$, i.e. only the null vector maps into the null vector under A , then $\mathrm{A} \underline{x}=\underline{b}$ has a unique solution for all $\underline{\mathrm{b}}$.

What happens if the kernel of A is not empty, i.e. there exists some $\underline{w} \neq \underline{0}$? Let us consider a specific example.

Look at a system with

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \tag{1.3.4-16}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then for any $\underline{v} \in \mathbf{R}^{3}$

$$
\mathrm{A} \underline{\mathrm{v}}=\left[\begin{array}{lll}
0 & 0 & 0 \tag{1.3.4-17}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\mathrm{v}_{3}
\end{array}\right]
$$

Writing

$$
\begin{gather*}
\underline{\mathrm{v}}=\mathrm{v}_{1} \underline{\mathrm{e}}^{[1]}+\mathrm{v}_{2} \underline{\mathrm{e}}^{[2]}+\mathrm{v}_{3} \underline{\mathrm{e}}^{[3]}, \tag{1.3.4-18}\\
\mathrm{Av}=\mathrm{v}_{1} \mathrm{~A} \underline{\mathrm{e}}^{[1]}+\mathrm{v}_{2} \mathrm{Ae}^{[2]}+\mathrm{v}_{3} \mathrm{~A} \underline{\mathrm{e}}^{[3]} \tag{1.3.4-19}
\end{gather*}
$$

With

$$
\begin{gathered}
\mathrm{Ae}^{[1]}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\underline{0} \\
\mathrm{~A}^{[2]}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\underline{0} \\
\mathrm{Ae}^{[3]}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\underline{\mathrm{e}}^{[3]} \\
\mathbf{(1 . 3 . 4 - 2 0)}
\end{gathered}
$$

Therefore

$$
\begin{equation*}
\mathrm{A} \underline{v}=\mathrm{v}_{1} \underline{0}+\mathrm{v}_{2} \underline{0}+\mathrm{v}_{3} \underline{\mathrm{e}}^{[3]}=\mathrm{v}_{3} \underline{\mathrm{e}}^{[3]} \tag{1.3.4-21}
\end{equation*}
$$

This information is "lost" when mapped by A

We therefore see that for this A, any vector that is a linear combination of $\underline{\mathrm{e}}^{[1]}$ and $\underline{\mathrm{e}}^{[2]}$ is part of the kernel,

$$
\begin{equation*}
\underline{\mathrm{w}}=\mathrm{w}_{1} \underline{\mathrm{e}}^{[1]}+\mathrm{w}_{2} \underline{\mathrm{e}}^{[2]} \in \mathrm{K}_{\mathrm{A}} \quad \text { (1.3.4-22) } \tag{1.3.4-23}
\end{equation*}
$$

we then can say that $\mathrm{K}_{\mathrm{A}}=\operatorname{span}\left\{\underline{\mathrm{e}}^{[1]}, \underline{\mathrm{e}}^{[2]}\right\}$, and so $\operatorname{dim}\left(\mathrm{K}_{\mathrm{A}}\right)=\mathrm{z}$.
Also since for any $\underline{\mathbf{v}} \in \mathbf{R}^{3}, \mathrm{~A} \underline{\mathbf{v}}=\left[\begin{array}{l}0 \\ 0 \\ \mathrm{v}_{3}\end{array}\right]=\mathrm{v}_{3} \underline{\mathrm{e}}^{[3]}$; therefore $\mathrm{R}_{\mathrm{A}}=\operatorname{span}\left\{\underline{\mathrm{e}}^{[3]}\right\}, \operatorname{dim}\left(\mathrm{R}_{\mathrm{A}}\right)=1$

(1.3.4-24)

As expected from the dimension theorem, $\operatorname{dim}\left(\mathrm{K}_{\mathrm{A}}\right)+\operatorname{dim}\left(\mathrm{R}_{\mathrm{A}}\right)=3$
Now, does $\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}}$ have a solution?

- if $\underline{b} \in R_{A}$, i.e. $\underline{b}=\left[\begin{array}{l}0 \\ 0 \\ b_{3}\end{array}\right]$ (1.3.4-26), then yes, there is a solution.

We easily see that a solution is

$$
\underline{x}=\left[\begin{array}{l}
0 \tag{1.3.4-28}\\
0 \\
b_{3}
\end{array}\right] \text { (1.3.4-27), } A \underline{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
b_{3}
\end{array}\right]=\underline{b}
$$

There are however an infinite number of solutions, since any vector $\underline{\mathrm{x}}+\mathrm{w}_{1} \underline{\mathrm{e}}^{[1]}+\mathrm{w}_{2} \underline{\mathrm{e}}^{[2]}$ is also a solution as

$$
\begin{align*}
\mathrm{A}\left(\underline{x}+\mathrm{w}_{1} \underline{\mathrm{e}}^{[1]}+\mathrm{w}_{2} \underline{\mathrm{e}}^{[2]}\right) & =\mathrm{A} \underline{x}+\mathrm{w}_{1} A \mathrm{e}^{[1]}+\mathrm{w}_{2} \mathrm{Ae}^{[2]} \\
& =\mathrm{Ax} \underline{\mathrm{w}^{2}}+\mathrm{w}_{1} \underline{0}+\mathrm{w}_{2} \underline{\mathrm{R}}_{\underline{\mathrm{A}}} \tag{1.3.4-29}\\
& \underline{(1.3 .4-29)}
\end{align*}
$$

- if $b \notin R_{A}$, i.e. $\underline{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ with either $b_{1} \neq 0$ or $b_{2} \neq 0$, then $A \underline{x}=\underline{b}$ has $\underline{n o}$ solution.

We see therefore that we have the following three possibilities regarding the existence and uniqueness of solutions to the linear system $A \underline{x}=\underline{b}, A N x N$ real matrix, $\underline{b} \in \mathbf{R}^{\mathrm{N}}$.

Case I

The kernel of A is empty, i.e. $K_{A}=\underline{0}$. Then, $R_{A}=\mathbf{R}^{N}$ and for all $\underline{b} \in \mathbf{R}^{N}$ there exists a unique solution \underline{x}.

Case II

There exists $\underline{\mathrm{w}} \neq 0$ for which $\mathrm{A} \underline{\mathrm{w}}=\underline{0}$. Let $\operatorname{dim}\left(\mathrm{K}_{\mathrm{A}}\right)=\mathrm{M}$, and $\left\{\underline{\mathrm{U}}^{[1]}, \underline{\mathrm{U}}^{[2]}, \ldots, \underline{\mathrm{U}}^{[\mathrm{M}]}\right\}$ forms an orthonormal basis K_{A},
$\underline{\mathrm{W}}=\mathrm{c}_{1} \underline{\mathrm{U}}^{[1]}+\mathrm{c}_{2} \underline{\mathrm{U}}^{[2]}+\ldots+\mathrm{c}_{\mathrm{M}} \underline{\mathrm{U}}^{[\mathrm{M}]} \in \mathrm{K}_{\mathrm{A}}, \mathrm{A} \underline{\mathrm{W}}=\underline{0}$
If then $\underline{b} \bullet \underline{U}^{[1]}=\underline{b} \bullet \underline{U}^{[2]}=\ldots=\underline{b} \bullet \underline{U}^{[M]}=0$, then $\underline{b} \in \mathrm{R}_{\mathrm{A}}$ and solutions exist, but there are an infinite number. If $\mathrm{A} \underline{x}=\underline{\mathrm{b}}$, then $\mathrm{A}\left(\underline{\mathrm{x}}+\mathrm{c}_{1} \underline{U}^{[1]}+\ldots+\mathrm{c}_{\mathrm{M}} \underline{\mathrm{U}}^{[\mathrm{M}]}\right)=\underline{\mathrm{b}}$ (1.3.4-31) as well.

Case III

Again $\operatorname{dim}\left(\mathrm{K}_{\mathrm{A}}\right)=\mathrm{M}, \mathrm{M} \geq 1$ and $\left\{\underline{\mathrm{U}}^{[1]}, \ldots \underline{U}^{[\mathrm{M}]}\right\}$ forms an orthonormal basis for K_{A}.
Now, for at least on $\underline{\mathrm{U}}^{[j]}, \mathrm{j}=1,2, \ldots, \mathrm{M}, \underline{b} \bullet \underline{U}^{[j]} \neq 0$. Therefore $\underline{\mathrm{b}} \notin \mathrm{R}_{\mathrm{A}}$ and the system $\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}}$ has no solution.

While these rules provide insight into existence and uniqueness, to employ them we need:

1. A method to determine if $\mathrm{K}_{\mathrm{A}}=0$ from the coefficients of A
2. A method to identify basis vectors for K_{A}

Point (1) is the subject of the next section. (2) is discussed in context of eigenvalues.

