1.3.3 Basis sets and Gram-Schmidt Orthogonalization

Before we address the question of existence and uniqueness, we must establish one more tool for working with vectors - basis sets.

$$
\text { Let } \underline{v} \in \mathbf{R}^{\mathrm{N}} \text {, with } \underline{v}=\left[\begin{array}{l}
\mathrm{v}_{1} \tag{1.3.3-1}\\
\mathrm{v}_{2} \\
: \\
\mathrm{v}_{3}
\end{array}\right]
$$

We can obviously define the set of N unit vectors

$$
\underline{\mathrm{e}}^{[1]}=\left[\begin{array}{c}
1 \tag{1.3.3-2}\\
0 \\
0 \\
: \\
0
\end{array}\right] \quad \underline{\mathrm{e}}^{[2]}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
: \\
0
\end{array}\right] \quad \ldots \quad \underline{\mathrm{e}}^{[\mathrm{N}]}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
: \\
1
\end{array}\right]
$$

so that we can write $\underline{\mathrm{v}}$ as

$$
\begin{equation*}
\underline{\mathrm{v}}=\mathrm{v}_{1} \underline{\mathrm{e}}^{[1]}+\mathrm{v}_{2} \underline{\mathrm{e}}^{[2]}+\ldots+\mathrm{v}_{\mathrm{N}} \underline{\mathrm{e}}^{[\mathrm{N}]} \tag{1.3.3-3}
\end{equation*}
$$

As any $\underline{\mathrm{v}} \in \mathbf{R}^{\mathrm{N}}$ can be written in this manner, the set of vectors $\left\{\underline{\mathrm{e}}^{[1]}, \underline{\mathrm{e}}^{[2]}, \ldots \underline{\mathrm{e}}^{[\mathrm{N}]}\right\}$ are said to form a basis for the vector space \mathbf{R}^{N}.

The same function can be performed by any set of mutually orthogonal vectors, i.e. a set of vectors $\left\{\underline{U}^{[1]}, \underline{U}^{[2]}, \ldots, \underline{U}^{[N]}\right\}$ such that

$$
\underline{\mathrm{U}}^{[\mathrm{j}]} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}=0 \quad \text { if } \mathrm{j} \neq \mathrm{k}(\mathbf{1} \cdot \mathbf{3} \cdot \mathbf{3}-\mathbf{4})
$$

This means that each $\underline{U}^{[j]}$ is mutually orthogonal to all of the other vectors. We can then write any $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ as

$$
\begin{equation*}
\underline{\mathrm{v}}=\mathrm{v}_{1}^{\prime} \underline{\mathrm{e}}^{[1]}+\mathrm{v}_{2}^{\prime} \underline{e}^{[2]}+\ldots+\mathrm{v}_{\mathrm{N}}^{\prime} \underline{\mathrm{e}}^{[\mathrm{N}]} \tag{1.3.3-5}
\end{equation*}
$$

Where we use a prime to denote that

$$
\begin{equation*}
\mathrm{v}_{\mathrm{j}}^{\prime} \neq \mathrm{v}_{\mathrm{j}} \tag{1.3.3-6}
\end{equation*}
$$

when comparing the expansions (1.3.3-3) and (1.3.3-5)

Orthogonal basis sets are very easy to use since the coefficients of a vector $\underline{v} \in \mathbf{R}^{N}$ in the expansion are easily determined.

We take the dot product of (1.3.3-5) with any basis vector $\underline{\mathrm{U}}^{[\mathrm{k}]}, \mathrm{k} \in[1, \mathrm{~N}]$,

$$
\begin{equation*}
\underline{\mathrm{v}} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}=\mathrm{v}_{1}^{\prime}\left(\underline{\mathrm{U}}^{[1]} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}\right)+\ldots+\mathrm{v}_{\mathrm{k}}^{\prime}\left(\underline{\mathrm{U}}^{[\mathrm{k}]} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}\right)+\ldots+\mathrm{v}_{\mathrm{N}}^{\prime}\left(\underline{\mathrm{U}}^{[\mathrm{N}]} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}\right) \tag{1.3.3-6}
\end{equation*}
$$

Because

$$
\begin{equation*}
\underline{\mathrm{U}}^{[\mathrm{j}]} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}=\left(\underline{\mathrm{U}}^{[\mathrm{k}]} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}\right) \delta_{\mathrm{jk}}=\left|\underline{\mathrm{U}}^{[\mathrm{k}]}\right|^{2} \delta_{\mathrm{jk}} \tag{1.3.3-7}
\end{equation*}
$$

with

$$
\delta_{\mathrm{jk}}=\left\{\begin{array}{l}
1, \mathrm{j}=\mathrm{k} \tag{1.3.3-8}\\
0, \mathrm{j} \neq \mathrm{k}
\end{array}\right.
$$

then (1.3.3-6) becomes

$$
\begin{equation*}
\underline{\mathrm{v}} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}=\mathrm{v}_{\mathrm{k}}^{\prime}\left|\underline{\mathrm{U}}^{[\mathrm{k}]}\right|^{2} \Rightarrow \mathrm{v}_{\mathrm{k}}^{\prime}=\frac{\mathrm{v} \bullet \underline{\mathrm{U}}^{[\mathrm{k}]}}{\left|\underline{\mathrm{U}}^{[\mathrm{k}]}\right|^{2}} \tag{1.3.3-9}
\end{equation*}
$$

In the special case that all basis vectors are normalized, i.e. $\left|\underline{U}^{[k]}\right|=1$ for all $k \in[1, N]$, we have an orthonormal basis set, and the coefficients of $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ are simply the dot products with each basis set vector.

Exmaple 1.3.3-1
Consider the orthogonal basis for \mathbf{R}^{3}
$\underline{\mathrm{U}}^{[1]}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \quad \underline{\mathrm{U}}^{[2]}=\left[\begin{array}{l}1 \\ -1 \\ 0\end{array}\right] \quad \underline{\mathrm{U}}^{[3]}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
(1.3.3-10)
for any $\underline{v} \in \mathbf{R}^{3}, \underline{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \quad$ what are the coefficients of the expansion

$$
\begin{equation*}
\underline{\mathrm{v}}=\mathrm{v}_{1}^{\prime} \underline{\mathrm{U}}^{[1]}+\mathrm{v}_{2}^{\prime} \underline{\mathrm{U}}^{[2]}+\mathrm{v}_{3}^{\prime} \underline{\mathrm{U}}^{[3]} \tag{1.3.3-11}
\end{equation*}
$$

First, we check the basis set for orthogonality

$$
\begin{align*}
& \underline{\mathrm{U}}^{[2]} \cdot \underline{\mathrm{U}}^{[2]}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right]=(1)(1)+(1)(-1)+(0)(0)=0 \\
& \underline{\mathrm{U}}^{[1]} \cdot \underline{\mathrm{U}}^{[3]}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=(1)(0)+(1)(0)+(0)(1)=0 \tag{1.3.3-12}\\
& \underline{\mathrm{U}}^{[2]} \bullet \underline{\mathrm{U}}^{[3]}=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=(1)(0)+(-1)(0)+(0)(1)=0
\end{align*}
$$

We also have

$$
\begin{aligned}
& \left|\underline{\mathrm{U}}^{[1]}\right|^{2}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=2 \\
& \left|\underline{\mathrm{U}}^{[2]}\right|^{2}=\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right]=2 \\
& \left|\underline{\mathrm{U}}^{[3]}\right|^{2}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=1
\end{aligned}
$$

(1.3.3-13)

So the coefficients of $\underline{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ are
$\mathrm{v}_{1}^{\prime}=\frac{\underline{\mathrm{V}} \bullet \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}}=\frac{1}{2}\left[\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\frac{1}{2}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)$
$\mathrm{v}_{2}^{\prime}=\frac{\underline{\mathrm{v}} \bullet \underline{\mathrm{U}}^{[2]}}{\left|\underline{\mathrm{U}}^{[2]}\right|^{2}}=\frac{1}{2}\left[\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}\end{array}\right]\left[\begin{array}{l}1 \\ -1 \\ 0\end{array}\right]=\frac{1}{2}\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)$
$\mathrm{v}_{3}^{\prime}=\frac{\underline{\mathrm{v}} \bullet \underline{\mathrm{U}}^{[3]}}{\left|\underline{\mathrm{U}}^{[3]}\right|^{2}}=\frac{1}{1}\left[\begin{array}{lll}\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\mathrm{v}_{3}$

Although orthogonal basis sets are very convenient to use, a set of N vectors $B=\left\{\underline{b}^{[1]}\right.$, $\left.\underline{b}^{[2]}, \ldots, \underline{b}^{[\mathrm{N}]}\right\}$ need not be mutually orthogonal to be used as a basis - they need merely be linearly independent.

Let us consider a set of $M \leq N$ vectors $\underline{b}^{[1]}, \underline{b}^{[2]}, \ldots, \underline{b}^{[M]} \in \mathbf{R}^{N}$. This set of M vectors is said to be linearly independent if

$$
\begin{equation*}
\mathrm{c}_{1} \underline{\mathrm{~b}}^{[1]}+\mathrm{c}_{2} \underline{\mathrm{~b}}^{[2]}+\ldots+\mathrm{c}_{\mathrm{M}} \underline{\underline{b}}^{[\mathrm{M}]}=0 \quad \text { implies } \mathrm{c}_{1}=\mathrm{c}_{2}=\ldots=\mathrm{c}_{\mathrm{M}}=0 \tag{1.3.3-16}
\end{equation*}
$$

This means that no $\underline{b}^{[j]}, j \in[1, M]$ can be written as a linear combination of the other M-1 basis vectors.

For example, the set of 3 vectors for \mathbf{R}^{3}

$$
\underline{\mathbf{b}}^{[1]}=\left[\begin{array}{l}
2 \tag{1.3.3-17}\\
0 \\
0
\end{array}\right] \quad \underline{\mathrm{b}}^{[2]}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \underline{b}^{[3]}=\left[\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right]
$$

is not linearly independent because we can write $\underline{b}^{[3]}$ as a linear combination of $\underline{b}^{[1]}$ and $\underline{b}^{[2]}$,

$$
\underline{\mathrm{b}}^{[1]-} \underline{\mathrm{b}}^{[2]}=\left[\begin{array}{l}
2 \tag{1.3.3-18}\\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right]=\underline{\mathrm{b}}^{[3]}
$$

Here, a vector $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ is said to be a linear combination of the vectors $\underline{b}^{[1]}, \ldots, \underline{b}^{[\mathrm{M}]} \in \mathbf{R}^{\mathrm{N}}$ if it can be written as

$$
\begin{equation*}
\underline{v}=v_{1}^{\prime} \underline{b}^{[1]}+v_{2}^{\prime} \underline{b}^{[2]}+\ldots+v_{M}^{\prime} \underline{b}^{[M]} \tag{1.3.3-19}
\end{equation*}
$$

We see that the 3 vectors of (1.3.3-17) do not form a basis for \mathbf{R}^{3} since we cannot express any vector $\underline{v} \in \mathbf{R}^{3}$ with $v_{3} \neq 0$ as a linear combination of $\left\{\underline{b}^{[1]}, \underline{\mathrm{b}}^{[2]}, \underline{b}^{[3]}\right\}$ since

$$
\underline{\mathrm{v}}=v_{1}^{\prime}\left[\begin{array}{l}
2 \tag{1.3.3-20}\\
0 \\
0
\end{array}\right]+v_{2}^{\prime}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+v_{3}^{\prime}\left[\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \mathrm{v}_{1}^{\prime}-\mathrm{v}_{2}^{\prime}+\mathrm{v}_{3}^{\prime} \\
\mathrm{v}_{2}^{\prime}-\mathrm{v}_{3}^{\prime} \\
0
\end{array}\right]
$$

We see however that if we instead had the set of 3 linearly independent vectors

$$
\underline{\mathrm{b}}^{[1]}=\left[\begin{array}{l}
2 \tag{1.3.3-21}\\
0 \\
0
\end{array}\right] \quad \underline{\mathrm{b}}^{[2]}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \underline{\mathrm{b}}^{[3]}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
$$

then we could write any $\underline{\underline{v}} \in \mathbf{R}^{3}$ as

$$
\underline{\mathrm{v}}=\left[\begin{array}{l}
\mathrm{v}_{1} \tag{1.3.3-22}\\
\mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]=v_{1}^{\prime}\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+v_{2}^{\prime}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+v_{3}^{\prime}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \mathrm{v}_{1}^{\prime}+\mathrm{v}_{2}^{\prime} \\
\mathrm{v}_{2}^{\prime} \\
2 \mathrm{v}_{3}^{\prime}
\end{array}\right]
$$

(1.3.3-22) defines a set of 3 simultaneous linear equations

$$
\begin{gather*}
2 \mathrm{v}_{1}^{\prime}+\mathrm{v}_{2}^{\prime}=\mathrm{v}_{1} \\
\mathrm{v}_{2}^{\prime}=\mathrm{v}_{2} \\
2 \mathrm{v}_{3}^{\prime}=\mathrm{v}_{3} \quad(\mathbf{1 . 3 . 3} \tag{1.3.3-23}
\end{gather*}
$$

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1}^{\prime} \\
\mathrm{v}_{2}^{\prime} \\
\mathrm{v}_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]
$$

that we must solve for $\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}$,

$$
\begin{equation*}
\mathrm{v}_{1}^{\prime}=\frac{\mathrm{v}_{3}}{2}, \quad \mathrm{v}_{2}^{\prime}=\mathrm{v}_{2}, \quad \mathrm{v}_{1}^{\prime}=\frac{\left(\mathrm{v}_{1}-\mathrm{v}_{2}^{\prime}\right)}{2} \tag{1.3.3-24}
\end{equation*}
$$

We therefore make the following statement:
Any set B of $\mathrm{N} \underline{\text { linearly independent vectors }} \underline{\mathrm{b}}^{[1]}, \underline{\mathrm{b}}^{[2]}, \ldots, \underline{\underline{b}}^{[\mathrm{N}]} \in \mathbf{R}^{\mathrm{N}}$ can be used as a basis for \mathbf{R}^{N}.

We can pick any M subset of the linearly independent basis B, and define the span of this subset $\left\{\underline{\underline{b}}^{[1]}, \underline{b}^{[2]}, \ldots, \underline{b}^{[\mathrm{M}]}\right\} \subset B$ as the space of all possible vectors $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ that can be written as

$$
\begin{equation*}
\underline{\mathrm{v}}=\mathrm{c}_{1} \mathrm{~b}^{[1]}+\mathrm{c}_{2} \underline{b}^{[2]}+\ldots+\mathrm{c}_{\mathrm{M}} \underline{\mathrm{~b}}^{[\mathrm{M}]} \tag{1.3.3-25}
\end{equation*}
$$

For the basis set (1.3.3-21), we choose $\underline{b}^{[1]}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ and $\underline{b}^{[3]}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right] .(\mathbf{1 . 3 . 3 - 2 6})$
Then, $\operatorname{span}\left\{\underline{b}^{[1]}, \underline{b}^{[3]}\right\}$ is the set of all vectors $\underline{v} \in \mathbf{R}^{3}$ that can be written as

$$
\underline{\mathrm{v}}=\left[\begin{array}{l}
\mathrm{v}_{1} \tag{1.3.3-27}\\
\mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]=\mathrm{c}_{1} \mathrm{~b}^{[1]}+\mathrm{c}_{3} \mathrm{~b}^{[3]}=\mathrm{c}_{1}\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+\mathrm{c}_{3}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 c_{1} \\
0 \\
2 c_{3}
\end{array}\right]
$$

Therefore, for this case it is easy to see that $\underline{v} \in \operatorname{span}\left\{\underline{b}^{[1]}, \underline{b}^{[3]}\right\}$, if and only if ("iff") $\mathrm{v}_{2}=0$.

Note that if $\underline{v} \in \operatorname{span}\left\{\underline{b}^{[1]}, \underline{b}^{[3]}\right\}$ and $\underline{w} \in \operatorname{span}\left\{\underline{b}^{[1]}, \underline{b}^{[3]}\right\}$, then automatically $\underline{\mathrm{v}}+\underline{\mathrm{w}} \in \operatorname{span}\left\{\underline{b}^{[1]}, \underline{\mathrm{b}}^{[3]}\right\}$.

We see then that span $\left\{\underline{b}^{[1]}, \underline{b}^{[3]}\right\}$ itself satisfies all the properties of a vector space identified in section 1.3.1.

Since $\operatorname{span}\left\{\underline{\mathrm{b}}^{[1]}, \underline{\underline{b}}^{[3]}\right\} \subset \mathbf{R}^{3}$ (i.e. it is a subset of \mathbf{R}^{3}), we call $\operatorname{span}\left\{\underline{\underline{b}}^{[1]}, \underline{\mathrm{b}}^{[3]}\right\}$ a subspace of \mathbf{R}^{3}.

This concept of basis sets also lets us formally identify the meaning of dimension - this will be useful in the establishment of criteria for existence/uniqueness of solutions.

Let us consider a vector space V that satisfies all the properties of a vector space identified in section 1.3.1.
We say that the dimension of V is N if every set of $\mathrm{N}+1$ vectors $\underline{v}^{[1]}, \underline{v}^{[2]}, \ldots, \underline{v}^{[\mathrm{N}+1]} \in \mathrm{V}$ is linearly independent and if there exists some set of N linearly independent vectors $\underline{\mathrm{b}}^{[1]}, \ldots, \underline{\mathrm{b}}^{[\mathrm{N}]} \in \mathrm{V}$ that forms a basis for V . We say then that $\operatorname{dim}(\mathrm{V})=\mathrm{N}$. (1.3.3-28)

While linearly independent basis sets are completely valid, they are more difficult to use than orthogonal basis sets because one must solve a set of N linear algebraic equations to find the coefficients of the expansion

$$
\begin{equation*}
\underline{\mathrm{v}}=\mathrm{v}_{1}^{\prime} \underline{\mathrm{b}}^{[1]}+\mathrm{v}_{2}^{\prime} \underline{b}^{[2]}+\ldots+\mathrm{v}_{\mathrm{N}}^{\prime} \underline{\mathrm{b}}^{[\mathrm{N}]} \tag{1.3.3-29}
\end{equation*}
$$

$$
\left[\begin{array}{cccc}
b_{1}^{[1]} & b_{1}^{[2]} & \ldots & b_{1}^{[N]} \tag{1.3.3-30}\\
b_{2}^{[1]} & b_{2}^{[2]} & \ldots & b_{2}^{[N]} \\
: & : & & : \\
b_{N}^{[1]} & b_{N}^{[2]} & \ldots & b_{N}^{[N]}
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{N}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right] \longleftarrow O\left(N^{3}\right) \text { effort to solve for all } v_{j}^{\prime} ' s
$$

This requires more effort for an orthogonal basis $\left\{\underline{\mathrm{U}}^{[1]}, \ldots, \underline{\mathrm{U}}^{[\mathrm{N}]}\right\}$ as

$$
\mathrm{v}_{\mathrm{j}}^{\prime}=\frac{\underline{\mathrm{V}} \bullet \underline{\mathrm{U}}^{[\mathrm{jj]}} \longleftarrow}{\underline{\mathrm{U}}^{[j]} \bullet \underline{\mathrm{U}}^{[j]}} \quad \mathrm{O}\left(\mathrm{~N}^{2}\right) \text { effort to find all } \mathrm{v}_{\mathrm{j}}^{\prime} \mathrm{s}
$$

(1.3.3-9, repeated)

This provides an impetus to perform Gramm-Schmidt orthogonalization. We start with a linearly independent basis set $\left\{\underline{b}^{[1]}, \underline{b}^{[2]}, \ldots, \underline{b}^{[\mathbf{N}]}\right\}$ for \mathbf{R}^{N}. From this set, we construct an orthogonal basis set $\left\{\underline{\mathrm{U}}^{[1]}, \underline{\mathrm{U}}^{[2]}, \ldots, \underline{\mathrm{U}}^{[\mathrm{N}]}\right\}$ through the following procedure:

1. First, set $\underline{U}^{[1]}=\underline{b}^{[1]}$
2. Next, we construct $\underline{\mathrm{U}}^{[2]}$ such that $\underline{\mathrm{U}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}=0$. Since $\underline{\mathrm{U}}^{[1]}=\underline{b}^{[1]}$, and $\underline{b}^{[2]}$ and $\underline{b}^{[1]}$ are linearly independent, we can form an orthogonal vector $\underline{U}^{[2]}$ from $\underline{b}^{[2]}$ by the following procedure:

$$
\begin{equation*}
\text { We write } \underline{\mathrm{U}}^{[2]}=\underline{\mathrm{b}}^{[2]}+\underline{\mathrm{c}}^{[1]} \tag{1.3.3-32}
\end{equation*}
$$

Then, taking the dot product with $\underline{\mathrm{U}}^{[1]}$,

$$
\begin{equation*}
\underline{\mathrm{U}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}=0=\underline{\mathrm{b}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}+\mathrm{c} \underline{\mathrm{U}}^{[1]} \bullet \underline{\mathrm{U}}^{[1]} \tag{1.3.3-33}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathrm{c}=\frac{-\underline{\mathrm{b}}^{[2]} \cdot \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}} \tag{1.3.3-34}
\end{equation*}
$$

And our $2^{\text {nd }}$ vector in the orthogonal basis is

$$
\begin{equation*}
\underline{\mathrm{U}}^{[2]}=\underline{\mathrm{b}}^{[2]}-\left[\frac{\underline{\mathrm{b}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}}\right] \underline{\mathrm{U}}^{[1]} \tag{1.3.3-35}
\end{equation*}
$$

3. We now form $\underline{\mathrm{U}}^{[3]}$ in a similar manner.

Since $\underline{\mathrm{U}}^{[2]}$ is a linear combination of $\underline{b}^{[1]}$ and $\underline{b}^{[2]}$, we can add a component from $\underline{b}^{[3]}$ direction to form $\underline{U}^{[3]}$,

$$
\begin{equation*}
\underline{\mathrm{U}}^{[3]}=\underline{\mathrm{b}}^{[3]}+\mathrm{c}_{2} \underline{\mathrm{U}}^{[2]}+\mathrm{c}_{1} \underline{\mathrm{U}}^{[1]} \tag{1.3.3-36}
\end{equation*}
$$

First, we want $\underline{\mathrm{U}}^{[3]} \bullet \underline{\mathrm{U}}^{[1]}=0=\underline{\mathrm{b}}^{[3]} \bullet \underline{\mathrm{U}}^{[1]}+\mathrm{c}_{2} \underline{\mathrm{U}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}+\mathrm{c}_{1} \underline{\mathrm{U}}^{[1]} \bullet \underline{\mathrm{U}}^{[1]}$
so

$$
\begin{equation*}
\mathrm{c}_{1}=\frac{-\underline{\mathrm{b}}^{[3]} \cdot \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}} \tag{1.3.3-38}
\end{equation*}
$$

A similar condition that $\underline{\mathrm{U}}^{[3]} \bullet \underline{\mathrm{U}}^{[2]}=0$ yields

$$
\begin{equation*}
\mathrm{c}_{2}=\frac{-\underline{\mathrm{b}}^{[3]} \bullet \underline{\mathrm{U}}^{[2]}}{\left|\underline{\mathrm{U}}^{[2]}\right|^{2}} \tag{1.3.3-39}
\end{equation*}
$$

so that the $3^{\text {rd }}$ member of the orthogonal basis set is

$$
\begin{equation*}
\underline{\mathrm{U}}^{[3]}=\underline{\mathrm{b}}^{[3]}-\left[\frac{\underline{\underline{\mathrm{b}}}^{[3]} \bullet \underline{\mathrm{U}}^{[2]}}{\left|\underline{\mathrm{U}}^{[2]}\right|^{2}}\right] \underline{\mathrm{U}}^{[2]}-\left[\frac{\underline{\mathrm{b}}^{[3]} \bullet \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}}\right] \underline{\mathrm{U}}^{[1]} \tag{1.3.3-40}
\end{equation*}
$$

4. Continue for $\underline{U}^{[j]}, j=4,5, \ldots, N$ where

$$
\begin{equation*}
\underline{\mathrm{U}}^{[\mathrm{j}]}=\underline{b}^{[\mathrm{jj}}-\sum_{\mathrm{k}=1}^{\mathrm{j}-1}\left[\frac{\underline{\underline{b}}^{[\mathrm{j}]}}{\underline{\underline{\mathrm{U}}^{[k]}}} \underset{\left.\mid \underline{\mathrm{U}}^{[\mathrm{k}}\right]\left.\right|^{2}}{\underline{\mathrm{U}}^{\mathrm{k}}}\right. \tag{1.3.3-41}
\end{equation*}
$$

5. Normalize vectors if desired (we can do this also during construction of orthogonal basis set)

$$
\begin{equation*}
\underline{\mathrm{U}}^{[\mathrm{j}]} \leftarrow \frac{\underline{\mathrm{U}}^{[\mathrm{j}]}}{\left|\underline{\mathrm{U}}^{[\mathrm{j}]}\right|} \tag{1.3.3-42}
\end{equation*}
$$

As an example, let us use this method to generate an orthogonal basis for \mathbf{R}^{3} such that the $1^{\text {st }}$ member of the basis set is

$$
\underline{\mathrm{U}}^{[1]}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \text { (1.3.3-43) }
$$

First, we write a linearly independent basis that is not, in general, orthogonal. For example, we could choose

$$
\underline{\mathrm{b}}^{[1]}=\left[\begin{array}{l}
1 \tag{1.3.3-44}\\
1 \\
0
\end{array}\right] \quad \underline{\mathrm{b}}^{[2]}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \underline{\mathrm{b}}^{[3]}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

We now perform Gram-Schmidt orthogonalization,

1. $\underline{\mathrm{U}}^{[1]}=\underline{\mathrm{b}}^{[1]}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \quad$ (1.3.3-45)
2. We next set

$$
\begin{gather*}
\underline{\mathrm{U}}^{[2]}=\underline{\mathrm{b}}^{[2]}-\left[\frac{\underline{\mathrm{b}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}}\right] \underline{\mathrm{U}}^{[1]} \quad(\mathbf{1} . \\
\left|\underline{\mathrm{U}}^{[1]}\right|^{2}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=2 \tag{1.3.3-46}\\
\underline{\mathrm{~b}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=1 \tag{1.3.3-47}
\end{gather*}
$$

(1.3.3-35, repeated)
so

$$
\begin{align*}
& \underline{\mathrm{U}}^{[2]}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right] \quad(\mathbf{1 . 3 . 3 - 4 8}) \tag{1.3.3-48}\\
& \text { Note } \underline{\mathrm{U}}^{[2]} \bullet \underline{\mathrm{U}}^{[1]}=\left[\begin{array}{lll}
1 / 2 & -1 / 2 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=1 / 2-1 / 2=0
\end{align*}
$$

We now calculate

$$
\begin{align*}
& \underline{\mathrm{U}}^{[3]}=\underline{\mathrm{b}}^{[3]}-\left[\frac{\underline{\mathrm{b}}^{[3]} \bullet \underline{\mathrm{U}}^{[2]}}{\left|\underline{\mathrm{U}}^{[2]}\right|^{2}}\right] \underline{\mathrm{U}}^{[2]}-\left[\frac{\underline{\mathrm{b}}^{[3]} \bullet \underline{\mathrm{U}}^{[1]}}{\left|\underline{\mathrm{U}}^{[1]}\right|^{2}}\right] \underline{\mathrm{U}}^{[1]} \\
& \text { (1.3.3-41, repeated) } \\
& \left|\underline{\mathrm{U}}^{[2]}\right|^{2}=\left[\begin{array}{lll}
1 / 2 & -1 / 2 & 0
\end{array}\right]\left[\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right]=\left(\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \tag{1.3.3-50}\\
& \underline{\mathrm{~b}}^{[3]} \cdot \underline{\mathrm{U}}^{[2]}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right]=0 \quad(\mathbf{1 . 3 . 3 - 5 1)} \\
& \underline{\mathrm{b}}^{[3]} \cdot \underline{\mathrm{U}}^{[1]}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=0
\end{align*}
$$

We therefore have merely $\underline{\mathrm{U}}^{[3]}=\underline{\mathrm{b}}^{[3]}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \quad$ (1.3.3-53)

Our orthogonal basis set is therefore

$$
\underline{\mathrm{U}}^{[1]}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \underline{\mathrm{U}}^{[2]}=\left[\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2} \\
0
\end{array}\right] \quad \underline{\mathrm{U}}^{[3]}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { (1.3.3-54) }
$$

