1.3.2 Multiplication of Matrices/Matrix Transpose

In section 1.3.1, we considered only square matrices, as these are of interest in solving linear problems $\mathrm{A} \underline{x}=\underline{b}$.

The interpretation of a matrix as a linear transformation can be extended to non-square matrix. If we consider a $M x N$ real matrix A, then A maps every vector $\underline{v} \in \mathbf{R}^{N}$ into a vector (now of dimensions $m, \operatorname{not} \mathrm{~N}$) $\mathrm{A} \underline{\mathrm{v}} \in \mathbf{R}^{\mathrm{N}}$, according to the rule

$$
A \underline{v}=\left[\begin{array}{lccc}
a_{11} & a_{12} & \ldots & a_{1 N} \tag{1.3.2-1}\\
a_{21} & a_{22} & \ldots & a_{2 N} \\
: & \vdots & & : \\
a_{m 1} & a_{m 2} & \ldots & a_{m N}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{12} \\
\vdots \\
v_{N}
\end{array}\right]=\left[\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+\ldots+a_{1 N} v_{N} \\
a_{21} v_{1}+a_{22} v_{2}+\ldots+a_{2 N} v_{N} \\
\vdots \\
a_{m 1} v_{1}+a_{m 2} v_{2}+\ldots+a_{m N} v_{N}
\end{array}\right]
$$

Note that the product $\mathrm{A} \underline{v}$ is defined only if the number of columns of A equals the dimensions (\# of components) of \underline{v}.

We give the $\mathrm{Mx} N$ matrix A , with all a_{ij} real, the following pictorial interpretation:

The interpretation of non-square matrices as linear transformations provides the following rule for multiplying two real matrices:

Let A be a $M \times P$ real matrix, and let B be a $P \times N$ real matrix. We define $C=A B$ to be the $M x N$ matrix (also real) that performs the same transformation to a vector $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ as

First, to $\underline{v} \in \mathbf{R}^{\mathrm{N}}$ we apply B ,

$$
\mathbf{B} \underline{\mathrm{v}}=\left[\begin{array}{llll}
\mathrm{b}_{11} & \mathrm{~b}_{12} & \ldots & \mathrm{~b}_{1 \mathrm{~N}} \tag{1.3.2-2}\\
\mathrm{~b}_{21} & \mathrm{~b}_{22} & \ldots & \mathrm{~b}_{2 \mathrm{~N}} \\
: & : & & : \\
\mathrm{b}_{\mathrm{p} 1} & \mathrm{~b}_{\mathrm{p} 2} & \ldots & \mathrm{~b}_{\mathrm{pN}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{12} \\
: \\
\mathrm{v}_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{l}
\sum_{\mathrm{j}=1}^{N} b_{1 j} v_{j} \\
\sum_{\mathrm{j}=1}^{N} b_{2 j} v_{j} \\
: \\
\sum_{\mathrm{j}=1}^{N} b_{p j} v_{j}
\end{array}\right]
$$

We then apply A to $\mathrm{Bv} \in \mathbf{R}^{\mathrm{p}}$,

$$
\mathrm{A}(\mathrm{~B} \underline{\mathrm{v}})=\left[\begin{array}{llll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{p}} \tag{1.3.2-3}\\
\mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \mathrm{a}_{2 \mathrm{p}} \\
: & \vdots & & : \\
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \ldots & \mathrm{a}_{\mathrm{mp}}
\end{array}\right]\left[\begin{array}{l}
\sum_{\mathrm{j}=1}^{N} b_{1 j} v_{j} \\
\sum_{\mathrm{j}=1}^{N} b_{2 j} v_{j} \\
\vdots \\
\sum_{\mathrm{j}=1}^{N} b_{p j} v_{j}
\end{array}\right]=\left[\begin{array}{l}
\sum_{k=1}^{p} a_{1 k} \sum_{\mathrm{j}=1}^{N} b_{k j} v_{j} \\
\sum_{k=1}^{p} a_{2 k} \sum_{\mathrm{j}=1}^{N} b_{k j} v_{j} \\
: \\
\sum_{k=1}^{p} a_{m k} \sum_{\mathrm{j}=1}^{N} b_{k j} v_{j}
\end{array}\right]
$$

If we compare to

$$
\mathrm{C} \underline{\mathrm{v}}=\left[\begin{array}{lcll}
\mathrm{c}_{11} & \mathrm{c}_{12} & \ldots & \mathrm{c}_{1 \mathrm{~N}} \tag{1.3.2-4}\\
\mathrm{c}_{21} & \mathrm{c}_{22} & \ldots & \mathrm{c}_{2 \mathrm{~N}} \\
: & : & & : \\
\mathrm{c}_{\mathrm{m} 1} & \mathrm{c}_{\mathrm{m} 2} & \ldots & \mathrm{c}_{\mathrm{mN}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{12} \\
\vdots \\
\mathrm{v}_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{l}
\sum_{\mathrm{j}=1}^{N} c_{1 j} v_{j} \\
\sum_{\mathrm{j}=1}^{N} c_{2 j} v_{j} \\
: \\
\sum_{\mathrm{j}=1}^{N} c_{m j} v_{j}
\end{array}\right]
$$

We see that rearranging (1.3.2-2) yields

$$
A(B \underline{v})=\left[\begin{array}{l}
\sum_{j=1}^{N}\left(\sum_{k=1}^{p} a_{1 k} b_{k j}\right) v_{j} \tag{1.3.2-5}\\
\sum_{j=1}^{N}\left(\sum_{k=1}^{p} a_{2 k} b_{k j}\right) v_{j} \\
\vdots \\
\sum_{j=1}^{N}\left(\sum_{k=1}^{p} a_{m k} b_{k j}\right) v_{j}
\end{array}\right]=\left[\begin{array}{l}
\sum_{j=1}^{N} c_{1 j} v_{j} \\
\sum_{j=1}^{N} c_{2 j} v_{j} \\
\vdots \\
\sum_{j=1}^{N} c_{m j} v_{j}
\end{array}\right]
$$

The (i, j) element of the matrix $\mathrm{C}=\mathrm{AB}$ is therefore

$$
\begin{equation*}
\mathrm{C}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{a}_{\mathrm{ik}} \mathrm{~b}_{\mathrm{kj}} \tag{1.3.2-6}
\end{equation*}
$$

We compute this element by summing the product of elements A along row \#I from left \rightarrow right with those elements of B in column $\# \mathrm{j}$ from top \rightarrow bottom.

$$
\begin{aligned}
& \text { column \#j }
\end{aligned}
$$

row \# i
We note that the product of two matrices A and $\mathrm{B}, \mathrm{C}=\mathrm{AB}$, is defined only if the number of columns of A equals the number of rows of B.

Note also that in general $\mathrm{AB} \neq \mathrm{BA}(\mathbf{1 . 3 . 2 - 8})$. We define the commutator of A and B as $[A, B] \equiv A B-B A \quad(1.3 .2-9)$

Note that we can interpret our rule for multiplying a vector $\underline{v} \in \mathbf{R}^{N}$ by an $\mathrm{M} \times \mathrm{N}$ matrix A by considering \underline{v} to be a matrix of dimension $\mathrm{N} \times 1$, i.e. a column vector.

$$
\left[\begin{array}{lccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{~N}} \tag{1.3.2-10}\\
\mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \mathrm{a}_{2 \mathrm{~N}} \\
: & : & & : \\
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \ldots & \mathrm{a}_{\mathrm{mN}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
: \\
\mathrm{v}_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{l}
\sum_{k=1}^{N} a_{1 k} v_{k} \\
\sum_{k=1}^{N} a_{2 k} v_{k} \\
: \\
\sum_{k=1}^{N} a_{m k} v_{k}
\end{array}\right]
$$

This is the convention that we will use. We can also write \underline{v} as a row vector by taking the transpose,

$$
\underline{\mathrm{v}}^{\mathrm{T}}=\left[\begin{array}{llll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \ldots & \mathrm{v}_{\mathrm{N}} \tag{1.3.2-11}
\end{array}\right]
$$

We see that \underline{v}^{T} is a $1 \times N$ matrix.
The dot product $\underline{v} \bullet \underline{w}$ can therefore be written for $\underline{v}, \underline{\mathrm{w}} \in \mathbf{R}^{\mathrm{N}}$

$$
\underline{v} \bullet \underline{w}=\underline{\mathrm{v}}^{\mathrm{T}} \underline{\mathrm{~W}}=\left[\begin{array}{llll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \ldots & \mathrm{v}_{\mathrm{N}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{w}_{1} \tag{1.3.2-12}\\
\mathrm{w}_{2} \\
\vdots \\
\mathrm{w}_{\mathrm{N}}
\end{array}\right]=\mathrm{v}_{1} \mathrm{~W}_{1}+\mathrm{v}_{2} \mathrm{~W}_{2}+\ldots+\mathrm{v}_{\mathrm{N}} \mathrm{~W}_{\mathrm{N}}
$$

We define a matrix transpose operation on a real matrix A of M rows and N columns as

$$
A^{T}=\left[\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 \mathrm{~N}} \tag{1.3.2-13}\\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 N} \\
: & : & & : & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m N}
\end{array}\right]^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
: & : & & \\
a_{1 N} & a_{2 N} & \ldots & a_{m N}
\end{array}\right]
$$

If A is an $M \times N$ matrix, A^{T} is $N \times M$ and $\left(A^{T}\right)_{i j}=a_{j i} \quad(\mathbf{1 . 3 . 2 - 1 4})$

