### 1.2.2 Gauss-Jordan Elimination

In the method of Gaussian elimination, starting from a system $\mathrm{A} \underline{x}=\underline{\mathrm{b}}$ of the general form

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n}  \tag{1.2.2-1}\\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
: & \vdots & \vdots & & : \\
: & : & : & & : \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
: \\
: \\
x_{N}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
: \\
\vdots \\
b_{n}
\end{array}\right]
$$

is converted to an equivalent system $A^{\prime} \underline{x}=\underline{b} \underline{ }^{\prime}$ after $\frac{2}{3} N^{3}$ FLOP's that is of upper triangular form

$$
\left[\begin{array}{lllll}
\mathrm{a}_{11}^{\prime} & \mathrm{a}_{12}^{\prime} & \mathrm{a}_{13}^{\prime} & \ldots & \mathrm{a}_{1 \mathrm{~N}}^{\prime}  \tag{1.2.2-2}\\
& \mathrm{a}_{22}^{\prime} & \mathrm{a}_{23}^{\prime} & \ldots & \mathrm{a}_{2 \mathrm{~N}}^{\prime} \\
& & \mathrm{a}_{33}^{\prime} & \ldots & \mathrm{a}_{3 \mathrm{~N}}^{\prime} \\
& & & & a_{\mathrm{NN}}^{\prime}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\left.\mathrm{x}_{2}\right] \\
: \\
\vdots \\
\mathrm{xN}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{b}_{1}^{\prime} \\
\mathrm{b}_{2}^{\prime} \\
\mathrm{b}_{3}^{\prime} \\
\vdots \\
\mathrm{b}_{\mathrm{N}}^{\prime}
\end{array}\right]
$$

At this point, it is possible, through backward substitution, to solve for the unknowns in the order $\mathrm{x}_{\mathrm{N}}, \mathrm{x}_{\mathrm{N}-1}, \mathrm{x}_{\mathrm{N}-2}, \ldots$ in $\frac{\mathrm{N}^{2}}{2}$ steps.

In the method of Gauss-Jordan elimination, one continues the work of elimination, placing zeros above the diagonal.
To "zero" the element at $(\mathrm{N}-1, \mathrm{~N})$, we write the last two equations of (1.2.2-2)

$$
\left.\begin{array}{l}
\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}-1}^{\prime} \mathrm{x}_{\mathrm{N}-1}+\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime} \mathrm{x}_{\mathrm{N}}=\mathrm{b}_{\mathrm{N}-1}^{\prime}  \tag{1.2.2-3}\\
\mathrm{a}_{\mathrm{N}, \mathrm{~N}}^{\prime} \mathrm{x}_{\mathrm{N}}=\mathrm{b}_{\mathrm{N}}^{\prime}
\end{array}\right\}
$$

We then define $\lambda_{\mathrm{N}-1, \mathrm{~N}}=\frac{\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime}}{\mathrm{a}_{\mathrm{NN}}^{\prime}}$
And replace the $\mathrm{N}-1^{\text {st }}$ row with the equation obtained after performing the row operation

$$
\begin{align*}
& \left(a_{\mathrm{N}-1, \mathrm{~N}-1}^{\prime} \mathrm{x}_{\mathrm{N}-1}+\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime} \mathrm{x}_{\mathrm{N}}=\mathrm{b}_{\mathrm{N}-1}^{\prime}\right) \\
& \frac{-\lambda_{\mathrm{N}-1, \mathrm{~N}}\left(\mathrm{a}_{\mathrm{NN}}^{\prime} \mathrm{x}_{\mathrm{N}}=\mathrm{b}_{\mathrm{N}}^{\prime}\right)}{\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}-1}^{\prime} \mathrm{x}_{\mathrm{N}-1}+\left(\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime}-\lambda_{\mathrm{N}-1, \mathrm{~N}} \mathrm{a}_{\mathrm{NN}}^{\prime}\right) \mathrm{x}_{\mathrm{N}}=\mathrm{b}_{\mathrm{N}-1}^{\prime}-\mathrm{b}_{\mathrm{N}}^{\prime} \lambda_{\mathrm{N}-1, \mathrm{~N}}} \tag{1.2.2-5}
\end{align*}
$$

Defining

$$
\begin{equation*}
\mathrm{b}_{\mathrm{N}-1}^{\prime \prime}=\mathrm{b}_{\mathrm{N}-1}^{\prime}-\mathrm{b}_{\mathrm{N}}^{\prime} \lambda_{\mathrm{N}-1, \mathrm{~N}} \tag{1.2.2-6}
\end{equation*}
$$

and noting

$$
\begin{equation*}
\mathrm{a}_{\mathrm{N}-1}^{\prime \prime}=\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime}-\lambda_{\mathrm{N}-1, \mathrm{~N}} \mathrm{a}_{\mathrm{NN}}^{\prime}=\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime}-\left(\frac{\mathrm{a}_{\mathrm{N}-1, \mathrm{~N}}^{\prime}}{\mathrm{a}_{\mathrm{NN}}^{\prime}}\right) \mathrm{a}_{\mathrm{NN}}^{\prime}=0 \tag{1.2.2-7}
\end{equation*}
$$

After this row operation the set of equations becomes

$$
\left[\begin{array}{cccccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} & \cdots & a_{1, \mathrm{~N}-1}^{\prime} & a_{1, \mathrm{~N}}^{\prime}  \tag{1.2.2-2}\\
& \mathrm{a}_{22}^{\prime} & \mathrm{a}_{23}^{\prime} & \cdots & a_{2, \mathrm{~N}-1}^{\prime} & a_{2, \mathrm{~N}}^{\prime} \\
& & \mathrm{a}_{33}^{\prime} & \ldots & a_{3, \mathrm{~N}-1}^{\prime} & a_{3, \mathrm{~N}}^{\prime} \\
& & & & \vdots & \vdots \\
& & & & a_{\mathrm{N}-1, \mathrm{~N}-1}^{\prime \prime} & 0 \\
& & & & & a_{\mathrm{NN}}^{\prime}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} 1^{\prime} \\
\mathrm{x} 2_{2}^{\prime} \\
x_{3} \\
\vdots \\
x_{\mathrm{N}-1} \\
\mathrm{x}_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{b}_{1}^{\prime} \\
\mathrm{b}_{2}^{\prime} \\
\mathrm{b}_{3}^{\prime} \\
\vdots \\
\mathrm{b}_{\mathrm{N}-1}^{\prime \prime} \\
\mathrm{b}_{\mathrm{N}}^{\prime}
\end{array}\right]
$$

We can continue this process until the set of equations is in diagonal form

$$
\left[\begin{array}{cccc}
\mathrm{a}_{11}^{\prime \prime \prime} & & &  \tag{1.2.2-9}\\
& \mathrm{a}_{22}^{\prime \prime \prime} & & \\
& & a_{33}^{\prime \prime \prime} & \\
& & & \mathrm{a}_{\mathrm{NN}}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l} 
\\
\\
\end{array}\right.
$$

Dividing each equation by the value of its single coefficient yields

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{l}
\frac{b_{1}^{\prime \prime \prime}}{a_{11}^{\prime \prime \prime}} \\
\frac{b_{2}^{\prime \prime \prime}}{a_{22}^{\prime \prime \prime}} \\
\frac{b_{3}^{\prime \prime \prime}}{a_{33}^{\prime \prime \prime}} \\
\vdots \\
\frac{b_{N}^{\prime \prime \prime}}{a_{N N}^{\prime \prime \prime}}
\end{array}\right]
$$

## (1.2.2-10)

The matrix on the left that has a one everywhere along the principal diagonal and zeros everywhere else is called the identity matrix, and has the property that for any vector v ,

$$
\underline{I} \underline{v}=\underline{v} \quad(1.2 .2-11)
$$

The form (1.2.2-10) therefore immediately gives the solution to the problem.
In practice, we use Gaussian Elimination, stopping at (1.2.2-2) to begin backward substitution rather than continue the elimination process because backward substitution is so fast, $\mathrm{N}^{2} \ll 2 \mathrm{~N}^{3} / 3$ for all but small problems.

We therefore do not consider the method of Gauss-Jordan Elimination further.

