
1.2.2 Gauss-Jordan Elimination 
 

In the method of Gaussian elimination, starting from a system A bx =  of the general 
form 
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is converted to an equivalent system A’ bx = ’ after 3N
3
2  FLOP’s that is of upper 

triangular form 
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At this point, it is possible, through backward substitution, to solve for the unknowns in 

the order xN, xN-1, xN-2, … in 
2

N2

 steps. 

 
In the method of Gauss-Jordan elimination, one continues the work of elimination, 
placing zeros above the diagonal. 
To “zero” the element at (N-1, N), we write the last two equations of (1.2.2-2) 
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And replace the N-1st row with the equation obtained after performing the row operation 
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After this row operation the set of equations becomes 
 
 





























'
NN

' '
   1-N1,-N

'
N3,

'
1-N3,

'
33

'
N2,

'
1-N2,

'
23

'
22

'
1.N

'
1-N1,

'
13

'
12

'
11

a                                                  

0   a                                     
:            :                                         

a     a      ...     a                   

a     a      ...     a     a         

a     a      ...     a     a     a



























N

1-N

3

2

1

x
x
:
x
x
x

=      (1.2.2-2) 



























'
N

' '
1-N

:

'
3

'
2

'
1

b

b

b
b

b

 
We can continue this process until the set of equations is in diagonal form 
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Dividing each equation by the value of its single coefficient yields 
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     (1.2.2-10) 

 
The matrix on the left that has a one everywhere along the principal diagonal and zeros 
everywhere else is called the identity matrix, and has the property that for any vector v, 
 

Iv = v     (1.2.2-11) 
 

The form (1.2.2-10) therefore immediately gives the solution to the problem. 
 
In practice, we use Gaussian Elimination, stopping at (1.2.2-2) to begin backward 
substitution rather than continue the elimination process because backward substitution is 
so fast, N2 << 2N3/3 for all but small problems. 
 
We therefore do not consider the method of Gauss-Jordan Elimination further. 
 
 
 


